Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{12^4.\left(-10^2\right)}{3^4.4^5.5^2}=\dfrac{3^4.2^8.2^2.\left(-5^2\right)}{3^4.2^{10}.5^2}=\dfrac{3^4.2^{10}.\left(-5^2\right)}{3^4.2^{10}.5^2}=-1\)
1.1!+2.2!+3.3!+4.4!+5.5!
= (2-1).1! + (3-1).2! + (4-1).3! + (5-1).4! + (6-1).5!
= 2! - 1! + 3! - 2! + 4!-3! + 5! - 4! + 6! - 5!
= 6! - 1!
= 720-1
= 719
\(=\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^{10}\cdot16}=\dfrac{2^4\cdot5^3\left(5+2\right)}{2^{10}\cdot2^4}=\dfrac{2^4\cdot5^3\cdot7}{2^{14}}=\dfrac{5^3\cdot7}{2^{10}}=\dfrac{875}{1024}\)
- \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{\left(2.3\right)^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
- \(\frac{3^{10}.11+9^5.5}{3^9.2^4}=\frac{3^{10}.11+\left(3^2\right)^5.5}{3^9.16}=\frac{3^{10}.11+3^{10}.5}{3^9.16}=\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=3\)
- 2100 - 299 - 298 - ... - 22 - 2
= 2100 - (299 + 298 + ... + 22 + 2)
Đặt A = 299 + 298 + ... + 22 + 2
2A = 2100 + 299 + ... + 23 + 22
2A - A = (2100 + 299 + ... + 23 + 22) - (299 + 298 + ... + 22 + 2)
A = 2100 - 2
Ta có:
2100 - 299 - 298 - ... - 22 - 2
= 2100 - (2100 - 2)
= 2100 - 2100 + 2
= 0 + 2
= 2
- 38 : 36 + (22)4 : 29
= 32 + 28 : 29
\(=9+\frac{1}{2}\)
\(=\frac{18}{2}+\frac{1}{2}=\frac{19}{2}\)