K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=1/3+1/9+...+1/243

=>3A=1+1/3+...+1/81

=>2A=1-1/243=242/243

=>A=121/243

31 tháng 7 2023

1+1/3 + 1/9 + 1/27 + 1/81 + 1/243

=243/243+81/243+27/243 +3/243 +1/243

=\(\dfrac{243+81+27+3+1}{243}\)

=355/243

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

$A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}$

$3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}$

$3A-A=3-\frac{1}{243}$

$2A=\frac{728}{243}$

$A=\frac{364}{243}$

=>x/27=1/9+3/27=1/9+1/9=2/9

=>x=6

11 tháng 3 2023

`x/27+(-3/27)=1/9`

`=>x/27+(-1/9)=1/9`

`=>x/27=1/9-(-1/9)`

`=>x/27=1/9+1/9`

`=>x/27=2/9`

`=>x/27=6/27`

`=>x=6`

Vậy `x=6`

11 tháng 8 2023

a/

\(\dfrac{2n+9}{n+1}=\dfrac{2\left(n+1\right)+7}{n+1}=2+\dfrac{7}{n+1}\)

\(\Rightarrow n+1=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{-8;-2;0;6\right\}\)

b/

\(\dfrac{3n+5}{n-1}=\dfrac{3\left(n-1\right)+8}{n-1}=3+\dfrac{8}{n-1}\)

\(\Rightarrow n-1=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow n=\left\{-7;-3;-1;0;2;5;9\right\}\)

23 tháng 3

Loại bài toán này là bài toán về tích của dãy số. Đầu tiên, ta nhận thấy rằng dãy số cho trước có quy luật như sau: mỗi phân số trong dãy có tử số là một số lẻ và mẫu số là một số chẵn. Cụ thể hơn, tử số của phân số thứ n là 3n - 2 và mẫu số của phân số thứ n là 3n. Vậy, ta có thể viết lại A như sau: A = \prod_{n=1}^{82} \frac{3n-2}{3n} Bây giờ, để chứng minh A < 1/27, ta sẽ so sánh từng phần tử trong dãy với 1/3. Nếu tất cả các phần tử đều nhỏ hơn hoặc bằng 1/3, thì tích của chúng cũng sẽ nhỏ hơn hoặc bằng (1/3)^82 = 1/(3^82). Ta có: \frac{3n-2}{3n} = 1 - \frac{2}{3n} <= 1 - \frac{2}{3*1} = \frac{1}{3} Vậy, tất cả các phần tử trong dãy đều nhỏ hơn hoặc bằng 1/3. Do đó: A <= (1/3)^82 < (1/27) Vậy, ta đã chứng minh được rằng A < 1/27.

28 tháng 8 2021

KHO THE

19 tháng 9 2021

\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)

\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)

\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)

25 tháng 7

a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)

    (\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)

     - \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)

     \(x\)   = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))

     \(x=\) - \(\dfrac{1}{2}\)

Vậy \(x=-\dfrac{1}{2}\) 

    

25 tháng 7

b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)

           \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)

          \(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)

         3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)

         3\(x\)   - 3,7 = - \(\dfrac{19}{2}\)

         3\(x\)         = - \(\dfrac{19}{2}\) + 3,7

          3\(x\)        = - \(\dfrac{29}{5}\)

           \(x\)         = - \(\dfrac{29}{5}\) : 3

           \(x\)        = - \(\dfrac{29}{15}\)

Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\) 

            

14 tháng 8 2023

a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.

14 tháng 8 2023

e phải tách ra nhé 

3 tháng 8 2021

bài này ai giải ra đc ko?