K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1322 + 264 . 68 + 682

= 1322 + 17952 + 682 

= 35 376 + 682 

= 40 000 

9 tháng 8 2022

    1322 + 264 .68 + 682

=   17424+ 17952 + 4624

= 35376 + 4624

= 40000

9 tháng 9 2020

Phân tích à ? -.-

a) ax - bx + ab - x2

= ( ax + ab ) - ( x2 + bx )

= a( x + b ) - x( x + b )

= ( x + b )( a - x )

b) x2 - 4xy + 4y2 - 4

= ( x2 - 4xy + 4y2 ) - 4

= ( x - 2y )2 - 22

= ( x - 2y - 2 )( x - 2y + 2 )

c) ( x2 + y2 - 2 )2 - ( 2xy - 2 )2

= [ ( x2 + y2 - 2 ) - ( 2xy - 2 ) ][ ( x2 + y2 - 2 ) + ( 2xy - 2 ) ]

= ( x2 + y2 - 2 - 2xy + 2 )( x2 + y2 - 2 + 2xy - 2 )

= ( x2 - 2xy + y2 )[ ( x2 + 2xy + y2 ) - 4 ]

= ( x - y )2[ ( x + y )2 - 22 ]

= ( x - y )2( x + y - 2 )( x + y + 2 )

d) ab( x2 + y2 ) + ( a2 + b2 ) ( cái này không phân tích được ((: )

23 tháng 7 2021

a)\(69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)

23 tháng 7 2021

\(1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)

24 tháng 12 2020

Bài 1: 

a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)

\(=\dfrac{15x^2y^2z}{3xyz}\)

\(=5xy\)

b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)

\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)

\(=15x^4-12x^3+9x^2\)

c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)

\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)

\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)

\(=2x+5+\dfrac{20}{x-4}\)

d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)

\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)

\(=-15x^3y^2+25x^2y^2-5xy^3\)

Ta có:

A=310.11+310.539.24=310.(11+5)39.16

=310.1639.16=3.11.1=3

Vậy giá trị biểu thức A là 3

17 tháng 9 2020

1 + 2xy - x2 - y2

= 1 - ( x2 - 2xy + y2 )

= 12 - ( x - y )2

= [ 1 - ( x - y ) ][ 1 + ( x - y ) ]

= ( y - x + 1 )( x - y + 1 )

a2 + b2 - c2 - d2 - 2ab + 2cd

= ( a2 - 2ab + b2 ) - ( c2 - 2cd + d2 )

= ( a - b )2 - ( c - d )2

= [ ( a - b ) - ( c - d ) ][ ( a - b ) + ( c - d ) ]

= ( a - b - c + d )( a - b + c - d )

a3b3 - 1

= ( ab )3 - 13

= ( ab - 1 )[ ( ab )2 + ab.1 + 12 ]

= ( ab - 1 )( a2b2 + ab + 1 )

x2( y - z ) + y2( z - x ) + z2( x - y )

= z2( x - y ) + x2y - x2z + y2z + y2x

= z2( x - y ) + ( x2y - y2x ) - ( x2z - y2z )

= z2( x - y ) + xy( x - y ) - z( x2 - y2 )

= z2( x - y ) + xy( x - y ) - z( x + y )( x - y )

= ( x - y )[ z2 + xy - z( x + y ) ]

= ( x - y )( z2 + xy - zx - zy )

= ( x - y )[ ( z2 - zx ) - ( zy - xy ) ]

= ( x - y )[ z( z - x ) - y( z - x ) ]

= ( x - y )( z - x )( z - y )