Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)
\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)
\(\Leftrightarrow\sqrt{x+1}.-13=0\)
\(\Leftrightarrow x=-1\)
A = ((20 + 1) . 20 : 2) . 2 = 420
B = (25 + 20) . 6 : 2 = 135
C = ( 33 + 26) . 8 : 2 = 236
D = (1 + 100) .100 : 2 = 5050
2.
A=\(\sqrt{\sqrt{\left(\sqrt{16}-\sqrt{12}\right)^2}}-\sqrt{\sqrt{\left(\sqrt{16}+\sqrt{12}\right)^2}}\)
\(=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}\)
\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)\)
\(=\sqrt{3}-1-\sqrt{3}-1\)
\(=-2\)
B= \(\sqrt{5-2\sqrt{2+\sqrt{\left(\sqrt{8}+\sqrt{1}\right)^2}}}\)
\(=\sqrt{5-2\sqrt{2+\sqrt{8}+1}}\)
\(=\sqrt{5-2\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{5-2\sqrt{\left(\sqrt{2}+\sqrt{1}\right)^2}}\)
\(=\sqrt{5-2\sqrt{2}-2}\)
\(=\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}\)
\(=\sqrt{2}-1\)
\(x=\dfrac{\sqrt{28-16\sqrt{3}}}{\sqrt{3}-1}=\dfrac{\sqrt{4}\sqrt{7-4\sqrt{3}}}{\sqrt{3}-1}\)
\(=\dfrac{2\sqrt{4-4\sqrt{3}+3}}{\sqrt{3}-1}=\dfrac{2\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-1}\)
\(=\dfrac{2\left(2-\sqrt{3}\right)}{\sqrt{3}-1}=\dfrac{4-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{3-2\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)^2}{\sqrt{3}-1}=\sqrt{3}-1\)
B=(x6+3x5-2x3+x2+2x-1)2018=(x6+x5+2x5+2x4-2x4-2x3+x2+2x+1-2)2018
=[(x+1)x5+2x4(x+1)-2x3(x+1)+(x+1)2-2]2018
mà ta có : x+1=\(\sqrt{3}-1+1=\sqrt{3}\)
=> B=\(\left[\sqrt{3}\left(x^5+2x^4-2x^3\right)+(\sqrt{3})^2-2\right]^{2018}\)
Ta có : x5+2x4-2x3=x3(x2+2x+1-3)=x3[(x-1)2 -3]=x3(3-3)=0
=>B=\(\left[\sqrt{3}.0+3-2\right]^{2018}=1^{2018}=1\)
Vậy .....
đầu bài kiểu gì đây:))?
Tk cho bn để chuộc lỗi