K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

                                      Giải :

Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\)   \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)

\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)

\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)

\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)

\(\Rightarrow E⋮6\)

Do \(E⋮6\)nên \(E\div6\)dư 0

Vậy \(E\div6\)có số dư bằng \(0\)

Bài 2:

                                             Giải :

Ta có:   \(n.\left(n+2\right).\left(n+7\right)\)

     \(=\left(n^2+2n\right).\left(n+7\right)\)

     \(=n^3+2n^2+7n^2+14n\)

     \(=n^3+9n^2+14n\)

     \(=n.\left(n^2+9n+14\right)\)

10 tháng 10 2021

cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13

5 tháng 12 2017

2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d

=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d

=> 7(5n+7) chia hết cho d

hay 35n+49 chia hết cho d

(35n+50)-(35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d

(35n-35n)+(50-49) chia hết cho d

0+1 chia hết cho d 1

chia hết cho d => d=1

Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)

Ta có a chia 25 dư 5 => a + 20 chia hết cho 25

        a chia 28 dư 8 => a + 20 chia hết cho 28

        a chia 35 dư 15 => a + 20 chia hết cho 35

=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}

Mà 119 < (a + 20) < 1020

Nên a + 20 = 700

=> a = 680

Vậy số tự nhiên cần tìm là 680

1

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\)                       \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\)       \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)

\(\text{⇒1 ⋮d}\)

\(\text{⇒d = 1}\)

Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)

Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.

\(M=1+3+3^2+...+3^{100}\)

\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)

\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)

mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)

\(4:13\left(dư4\right)\)

\(\Leftrightarrow M:13\left(dư4\right)\)

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

26 tháng 12 2018

ko biết mình mới học lớp 4 thôi

Con " Nguyễn Huyền Trang " đéo biết thì trả lời làm cái l*n gì

10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu

2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301

10 tháng 8 2018

4/ Gọi số HS là a (a thuộc N, 300 < a < 400)

Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS  hay   a : 12, 15, 18 dư 9    => (a - 9) chia hết cho 12, 15, 18  => a - 9 là BC(12,15,18)

12 = 2 mũ 2 x 3             ;                 15 = 3 x 5             ;                        18 = 2 x 3 mũ 2

Thừa số nguyên tố chung và riêng: 2, 3, 5

BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180

=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }

=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }

Mà 300 < a < 400   => a - 9 = 360

                                      a = 360 + 9

                                      a = 369