Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
1
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)
\(\text{⇒1 ⋮d}\)
\(\text{⇒d = 1}\)
Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)
Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.
\(M=1+3+3^2+...+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)
mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Con " Nguyễn Huyền Trang " đéo biết thì trả lời làm cái l*n gì
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
4/ Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13