Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AEHF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{AEH}=90^0\)(HE⊥AB)
\(\widehat{AFH}=90^0\)(HF⊥AC)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒AH=EF(Hai đường chéo trong hình chữ nhật AEHF)
a: Xets ΔCAH có
I là trung điểm của CA
IF//AH
=>F là trug điểm của CH
Xét ΔECH có
EF vừa la đường cao, vừa là trung tuyến
=>ΔECH cân tại E
Xet ΔICH có
IF vừalà đường cao, vừa là trung tuyến
=>ΔICH cân tại I
Xét ΔIHE va ΔICE có
IH=IC
HE=CE
IE chung
=>ΔIHE=ΔICE
=>góc IHE=90 độ
b: Xet ΔIHE vuông tại H và ΔBHA vuông tại H có
góc HIE=góc HBA(=góc FIC)
=>ΔIHE đồng dạng với ΔBHA
=>HI/HB=HE/HA
=>HI/HE=HB/HA
=>ΔHIB đồng dạng với ΔHEA
a)Xét △ABC vuông tại A (gt)
=> BC2 = AB2 + AC2 (định lý Pytago)
BC2 = 52 + 122 = 25 + 144 = 169
=> BC = \(\sqrt{169}\) = 13 cm
Xét △ABC có BF là tia phân giác của góc ABC (gt)
=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)
=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)
=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm
b)Xét △ABF và △HBE có:
góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)
góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABF ∼ △HBE (g.g)
c) Vì △ABF ∼ △HBE (câu b)
=> góc BFA bằng góc BEH
mà góc AEF bằng góc BEH (2 góc đối đỉnh)
=> góc BFA bằng góc AEF
=> △AEF cân tại A
d)Xét △ABC và △AHB có:
góc ABC chung
góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABC ∼ △HBA (g.g)
=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)
Xét △ABH có BE là tia phân giác của góc ABC (gt)
=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)
Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)
=> AB.AE=BC.HE(chắc vậy?)
xét tam giác ABH và Tam giác ACH có :
AC=AB(tính chất tam giác cân)
AHB=AHC(AH vg góc BC)
AH chung
do đó tam giác ABH=tam giác ACH(ch-gn)
b,tAm giác ABC có AH là đường cao xuất phát từ đỉnh A đồng thời là đường phân giác .Suy ra :góc BAH=CAH^(1) HAY EAH^=CAH^
vì EH //AC nên :CAH^=AHE^(2 góc sltrong)(2)
Từ (1) và(2) suy raEAH^=AHE^
suy ra tam giác AHE cân tại E