K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=15cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: AD=HD

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: \(\widehat{BAC}=70^0\)

nên \(\widehat{BAH}=35^0\)

=>\(\widehat{B}=55^0\)

=>BH<AH

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: AD=AE

hay ΔADE cân tại A

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>góc BAH=góc CAH=50/2=25 độ

c: góc AKC=góc AHC=90 độ

=>AKHC nội tiếp

=>góc KAH=góc KCH

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao cho...
Đọc tiếp

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!

1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy

2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao cho A là trung điểm của BD. Chứng minh rằng:

      - Góc BCD = góc ABC + góc ADC

      - Góc BCD = 90 độ

3) Cho tam giác ABC. Vẽ các tam giác đều ABD và ACE ra phía ngoài tam giác ABC. Nối BE và CD. Gọi M và N là trung điểm của BE và CD. Chứng minh tam giác AMN đều

4) Cho tam giác ABC cân, AB là cạnh đấy, góc C = 100 độ. Trên nửa mặt phẳng chứa điểm C, bờ là đường thẳng AB, dựng tia Ax tạo với AB một góc 30 độ và tia By tạo với BA một góc 20 độ. Hai tia Ax và By cắt nhau tại D. Tính góc ACD

5) Cho tam giác ABC cân tại A có góc A < 90 độ, kẻ BD vuông góc với AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Chứng minh rằng:

      - DE song song với BD

      - CE vuông góc với AB

0