Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
a﴿ n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+﴿ n chia cho 3 dư 1 : n = 3k + 1 => n 2 = ﴾3k +1﴿.﴾3k +1﴿ = 9k 2 + 6k + 1 = 3.﴾3k 2 + 2k﴿ + 1 => n 2 chia cho 3 dư 1
+﴿ n chia cho 3 dư 2 => n = 3k + 2 => n 2 = ﴾3k +2﴿.﴾3k+2﴿ = 9k 2 + 12k + 4 = 3.﴾3k 2 + 4k +1﴿ + 1 => n 2 chia cho 3 dư 1
Vậy...
b﴿ p là số nguyên tố > 3 => p lẻ => p 2 lẻ => p 2 + 2003 chẵn => p 2 + 2003 là hợp số
k minh nha
a) n là số ko chia hết cho 3 => có dạng 3k +1. Ta có : (3k+1) 2 = 3k2 + 12 . Ta có 3k ^2 chia hết cho 3 ; 1^2 chia 3 dư 1 => n ^2 chia ba dư 1
b) vì p là SNT lớn hơn 3 => p^2 chia cho 3 có dạng 3k +1 . Ta có 3k+1 + 2003 = 3k + 2004 chia hết cho 3 => là hợp số
a) Vì n là số không chia hết cho 3 nên n có dạng 3k+1 hoặc 3k+2
+) n = 3k+1 => n2 = (3k+1)2
= 9k2 + 6k +1
Có 9k2 \(⋮\)3 ; 6k \(⋮\)3 ; 1 \(⋮\) 3 dư 1 => 9k2 +6k +1 chia 3 dư 1
hay n2 chia 3 dư 1 (1)
+) n= 3k+2 => n2 = (3k+2)2 = 9k2 +12k + 4
Có 9k2 \(⋮\)3 ; 12k\(⋮\)3 ; 4 chia 3 dư 1 => 9k2 +12k +4 chia 3 dư 1
hay n2 chia 3 dư 1 (2)
Từ (1),(2) => đpcm
a) Nếu n = 3k+1 thì n2n2 = (3k+1)(3k+1) hay n2n2 = 3k(3k+1)+3k+1
Rõ ràng n2n2 chia cho 3 dư 1
Nếu n = 3k+2 thì n2n2 = (3k+2)(3k+2) hay n2n2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n2n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p2p2 chia cho 3 dư 1 tức là p2=3k+1p2=3k+1 do đó p2+2003=3k+1+2003p2+2003=3k+1+2003 = 3k+2004⋮⋮3
Vậy p2+2003p2+2003 là hợp số
neu p>3 thi p^2 se la mot so le
Trong day so nguyen to chi co duy nhat mot so chan la 2
=>p^2 + 2003 se la mot so chan (le+le=chan)
tu do suy ra p^2 + 2003 la hop so
Bài 1:
Giải:
Số tự nhiên có hai chữ số có dạng: \(\overline{ab}\)
Khi viết số đó sau số 2003 ta được số: \(\overline{2003ab}\)
Theo bài ta có: \(\overline{2003ab}\) ⋮ 37
200300 + \(\overline{ab}\) ⋮ 37
200281 + 19 + \(\overline{ab}\) ⋮ 37
19 + \(\overline{ab}\) ⋮ 37
19 + \(\overline{ab}\) \(\in\) B(37) = {0; 37; 74; 111; 148;...;}
\(\overline{ab}\) \(\in\) {-19; 18; 55; 92; 129;...;}
Vậy \(\overline{ab}\) \(\in\) {18; 55; 92}