K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

\(B=x^3-y^3-\left(x^2+xy+y^2\right)\left(x-y\right)\)

\(\Rightarrow B=x^3-y^3-\left(x^3-y^3\right)\)

\(\Rightarrow B=0\)

\(\Rightarrow B\)ko phụ thuộc vào g/t của biến 

\(C=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)

\(\Rightarrow C=3x^2+15x-\left(3x^2+18x-3x-18\right)+8\)

\(\Rightarrow C=3x^2+15x-3x^2-15x+18+8\)

\(\Rightarrow C=26\)

Vậy \(C\)ko phụ thuộc vào giá trị của biến 

24 tháng 10 2021

b: \(B=2x\left(x-3\right)-\left(2x-2\right)\left(x-2\right)\)

\(=2x^2-6x-2x^2+4x+2x-4\)

=-4

12 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(K=x^2-7x+13\)

\(K=x^2-2x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+13\)

\(K=\left(x-\frac{7}{2}\right)^2-\frac{49}{4}+13\)

\(K=\left(x-\frac{7}{2}\right)^2+\frac{3}{4}\)

Nhận xét: \(\left(x-\frac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{7}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{7}{2}\right)^2=0\Rightarrow x=\frac{7}{2}\)

Vậy \(minK=\frac{3}{4}\Leftrightarrow x=\frac{7}{2}\)

12 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(M=-x^2+4x+4\)

\(M=-\left(x^2-4x-4\right)\)

\(M=-\left(x^2-4x+4-8\right)\)

\(M=-\left[\left(x-2\right)^2-8\right]\)

\(M=-\left(x-2\right)^2+8\)

Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+8\le8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxM=8\Leftrightarrow x=2\)

10 tháng 10 2023

help me

10 tháng 10 2023

@Kiều Vũ Linh

10 tháng 10 2023

\(a)x^2-6x-2xy+12y\\=(x^2-2xy)-(6x-12y)\\=x(x-2y)-6(x-2y)\\=(x-2y)(x-6)\)

Bạn xem lại đề!

\(b\Big) (3-2x)(3+2x)+(2x+3)(2x-5)+4x\\=3^2-(2x)^2+(4x^2-10x+6x-15)+4x\\=9-4x^2+4x^2-10x+6x-15+4x\\=(9-15)+(-4x^2+4x^2)+(-10x+6x+4x)\\=-6\)

*Đã sửa đề*

\(c\Big) 4(x+1)^2+(2x-1)^2-8(x-1)(x+1)-4x\\=4(x^2+2x+1)+(2x)^2-2\cdot2x\cdot1x+1^2-8(x^2-1^2)-4x\\=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\\=(4x^2+4x^2-8x^2)+(8x-4x-4x)+(4+1+8)\\=13\)

*Đã sửa đề*

\(d\big) (3x+2)^2+(2x-7)^2-2(3x+2)(2x-7)-x^2+36x\\=[(3x+2)^2-2(3x+2)(2x-7)+(2x-7)^2]-x^2+36x\\=[(3x+2)-(2x-7)]^2-x^2+36x\\=(3x+2-2x+7)^2-x^2+36x\\=(x+9)^2-x^2+36x\\=(x+9-x)(x+9+x)+36x\\=9(2x+9)+36x\\=18x+81+36x\)

Bạn xem lại đề!

\(Toru\)

23 tháng 5 2021

a) \(A=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+5\right)\)

\(A=2x^2+x-x^3-2x^2+x^3-x+5\)

\(A=5\)

=> giá trị biểu thức ko phụ thuộc vào biến x

b) \(A=x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)

=> \(A=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)

=> \(A=\)16

vậy giá trị của biểu thức A ko phụ thuộc vào biến x

30 tháng 9 2021

\(\left(2x+11\right)\left(3x-5\right)-\left(2x+3\right)\left(3x+7\right)=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\left(đpcm\right)\)

23 tháng 10 2021

\(A=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)

18 tháng 6 2016

Gía trị biểu thức không phụ thuộc vào biến nghĩa là với mọi x, biểu thức đó có giá trị là 1 số thực.Ta có :

A = 2x(x - 1) - x(2x + 1) - (3 - 3x) = 2x2 - 2x - 2x2 - x - 3 + 3x = (2x2 - 2x2) + (3x - 2x - x) - 3 = -3

B = 2x(x - 3) - (2x - 2)(x - 2) = 2x2 - 6x - 2x2 + 4x + 2x - 4 = (2x2 - 2x2) + (4x + 2x - 6x) - 4 = -4

C = (3x - 5)(2x + 11) - (2x + 3)(3x + 7) = 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21 = (6x2 - 6x2) + (33x - 10x - 14x - 9x) - 55 - 21 = -76      = D = (2x + 11)(3x - 5) - (2x + 3)(3x + 7)

Vậy với mọi x , (A,B,C,D) = (-3;-4;-76;-76) => đpcm 

D = 

`#3107.101107`

\((3x+7)(2x+3)-(3x-5)(2x+11)+3\)

`= 6x^2 + 9x + 14x + 21 - (6x^2 + 33x - 10x - 55) + 3`

`= 6x^2 + 23x + 21 - 6x^2 - 23x + 55 + 3`

`= (6x^2 - 6x^2) + (23x - 23x) + (21 + 55 + 3)`

`= 79`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến x.

1 tháng 11 2023

(3x + 7)(2x + 3) - (3x - 5)(2x + 11) + 3

= 6x² + 9x + 14x + 21 - 6x² - 33x + 10x + 55 + 3

= (6x² - 6x²) + (9x + 14x - 33x + 10x) + (21 + 55 + 3)

= 89

Vậy giá trị của biểu thức đã cho không phụ thuộc vào giá trị của biến