Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
\(\bullet \) Nếu \(a\vdots p\Rightarrow b\vdots p\Rightarrow a^b+b^a;a^a+b^b\vdots p\)
Mặt khác, \(a,b\) nên \(a^b+b^a;a^a+b^b\) chẵn, do đó \(a^b+b^a;a^a+b^b\vdots 2\)
Mà \((2,p)=1\Rightarrow a^a+b^b;a^b+b^a\vdots 2p\) (đpcm)
\(\bullet \) Nếu \((a,p)=(b,p)=1\)
+) Với \(a^b+b^a\)
\(a+b\equiv 0\pmod p\Rightarrow a\equiv -b\pmod p\)
Do đó, \(a^b+b^a\equiv (-b)^b+b^a\equiv b^a-b^b\pmod p\) (do \(b\) lẻ)
\(\Leftrightarrow a^b+b^a\equiv b^b(b^{a-b}-1)\pmod p\) \((\star)\)
Vì \(a-b\vdots p-1\Rightarrow a-b=k(p-1)\) (với \(k\in\mathbb{N})\)
\(\Rightarrow b^{a-b}-1=b^{k(p-1)}-1\)
Áp dụng định lý Fermat nhỏ với \((b,p)=1\) :
\(b^{p-1}\equiv 0\pmod p\Rightarrow b^{k(p-1)}\equiv 1\pmod p\)
\(\Leftrightarrow b^{k(p-1)}-1\equiv 0\pmod p\Leftrightarrow a^b+b^a\equiv 0\pmod p\)
Mặt khác cũng dễ cm \(a^b+b^a\vdots 2\), và \((p,2)=1\Rightarrow a^b+b^a\vdots 2p\) (đpcm)
+) Với \(a^a+b^b\)
\(a^a+b^b\equiv (-b)^a+b^b\equiv b^b-b^a\equiv b^a-b^b\equiv b^b(b^{a-b}-1)\pmod p\)
Đến đây giống y như khi xét \(a^b+b^a\) ( đoạn \((\star)\) ) ta suy ra \(a^a+b^b\equiv 0\pmod p\)
Mà cũng thấy \(a^a+b^b\vdots 2\), và \((2,p)=1\Rightarrow a^a+b^b\vdots 2p\)
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
Ta có:
7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N
8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N
\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)
a) Ta có 2n+8=2(n-3)+14
=> 14 chia hết cho n-3
n nguyên => n-3 nguyên => n-3\(\in\)Ư(14)={-14;-7;-2;-1;1;2;7;14}
ta có bảng
n-3 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 | |
n | -11 | -4 | 1 | 2 | 4 | 5 | 10 | 17 |
Vậy n={-11;-4;-1;2;4;5;10;17}
b) Ta co 3n+11=3(n-5)-4
=> 4 chia hết chia hết cho n+5
n nguyên => n+5 nguyên
=> n+5\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
ta có bảng
n+5 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -9 | -7 | -6 | -4 | -3 | -1 |
vậy n={-9;-7;-6;-4;-3;-1}
a) Ta có
\(a^2+4b^2=12ab\Leftrightarrow\left(a+2b\right)^2=16ab\)
Do a,b dương nên \(a+2b=4\sqrt{ab}\) khi đó lấy logarit cơ số 10 hai vế ta được :
\(lg\left(a+2b\right)=lg4+\frac{1}{2}lg\left(ab\right)\)
hay
\(lg\left(a+2b\right)-2lg2=\frac{1}{2}\left(lga+lgb\right)\)
b) Giả sử a,b,c đều dương khác 0. Để biểu diễn c theo a, ta rút lgb từ biểu thức \(a=10^{\frac{1}{1-lgb}}\) và thế vào biểu thức \(b=10^{\frac{1}{1-lgc}}\). Sau khi lấy logarit cơ số 10 2 vế, ta có :
\(a=10^{\frac{1}{1-lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow lgb=1-\frac{1}{lga}\)
Mặt khác , từ \(b=10^{\frac{1}{1-lgc}}\) suy ra \(lgb=\frac{1}{1-lgc}\) Do đó :
\(1-\frac{1}{lga}=\frac{1}{1-lgc}\)
\(\Rightarrow1-lgx=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)
\(\Rightarrow lgc=\frac{1}{1-lga}\)
Từ đó suy ra : \(c=10^{\frac{\frac{1}{1-lga}}{ }}\)