K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

CÁC BẠN GIÚP MÌNH NHA

9 tháng 8 2017

A) \(\frac{1}{2}\cdot\left(\frac{2}{9}+\frac{3}{7}-\frac{5}{27}\right)\) 

\(=\frac{1}{2}\cdot\frac{1}{2}\)

\(=\frac{1}{4}\)

B)   \(\left(\frac{-5}{28}+1.75+\frac{8}{35}\right):\left(-3\frac{9}{20}\right)\)

\(=\left(\frac{-5}{28}+\frac{7}{4}+\frac{8}{35}\right):\frac{-69}{20}\)

\(=\frac{14}{5}:\frac{-69}{20}\)

\(=\frac{-56}{69}\)

18 tháng 4 2016

\(\frac{1}{3^2}<\frac{1}{3.4}\)

\(\frac{1}{4^2}<\frac{1}{4.5}\)

\(\frac{1}{5^2}<\frac{1}{5.6}\)

\(...\)

\(\frac{1}{100^2}<\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{101}\)

Mà \(\frac{1}{3}<\frac{1}{2}\) nên \(\frac{1}{3}-\frac{1}{101}<\frac{1}{2}\)

hay \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2}\)

17 tháng 4 2016

Đặt A=1/3^2+1/4^2+1/5^2+...+1/100^2

Suy raA<1/2*3+1/3*4+1/4*5+..+1/99*100

A<1/2-1/100<1/2

Ta có điều phải chứng minh.

5 tháng 3 2018

1/6=1/2 =.....

8 tháng 2 2021

các bạn bt làm giúp mình với 

7 tháng 3 2018

Bài 1 :

36/1212 = 3/101

13/1313 = 1/101

3/101 + 1/101 = 4/101

Vậy 36/1212 + 13/1313 = 4/101.

Bài 2 :

A = 5/13 + 1/2 + -5/9 + -3/6 + 4/-9

A = 5/13 + 1/2 + -5/9 + -1/2 + -4/9

A = (1/2 + -1/2) + (-5/9 + -4/9) + 5/13

A = 0 + (-1) + 5/13

A = (-1) + 5/13 = -13/13 + 5/13 = 8/13.

Chúc bạn học giỏi nhé.

7 tháng 3 2018

1)4/101

2)-8/13

4 tháng 4 2016

\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{20^2}\)

\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{20^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(S<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(S<\frac{1}{2}-\frac{1}{20}<\frac{1}{2}\)

Vậy \(S<\frac{1}{2}\)

4 tháng 4 2016

Cám ơn bạn rất nhiều hjhj