Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2,5x-0,5-4,5+2m(x-2)
=>2,5x+2mx-4m-5=0
=>x(2m+2,5)=4m+5
=>x(4m+5)=8m+10
TH1: m=-5/4
=>Phương trình có vô số nghiệm
=>Nhận
TH2: m<>-5/4
Phương trình có nghiệm duy nhất là x=(8m+10)/(4m+5)=2(loại)
b: =>\(\dfrac{3mx+12m+5}{9m^2-1}=\dfrac{\left(2x-3\right)\left(3m-1\right)+\left(3x-4m\right)\left(3m+1\right)}{\left(3m-1\right)\left(3m+1\right)}\)
=>6xm-2x-9m+3+9xm+3x-12m^2-4m=3mx+12m+5
=>-12m^2+15xm+x-13m+3-3mx-12m-5=0
=>-12m^2+x(15m+1-3m)-25m-2=0
=>x(12m+1)=12m^2+25m+2
=>x(12m+1)=(m+2)(12m+1)
Th1: m=-1/12
=>PT luôn có nghiệm
=>Nhận
TH2: m<>-1/12
Để phương trình có nghiệm âm thì m+2<0
=>m<-2
\(ĐK:x\ne-1\)
\(\dfrac{m+1}{x+1}=m^2+3m+2=\left(m+1\right)\left(m+2\right)\\ \Leftrightarrow x+1=\dfrac{m+1}{\left(m+1\right)\left(m+2\right)}=\dfrac{1}{m+2}\\ \Leftrightarrow x=\dfrac{1}{m+2}-1=\dfrac{-m-1}{m+2}\)
Nghiệm âm \(\Leftrightarrow x< 0\Leftrightarrow\dfrac{-m-1}{m+2}< 0\Leftrightarrow\dfrac{m+1}{m+2}>0\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)
Mà \(x\ne-1\Leftrightarrow\dfrac{m+1}{m+2}\ne1\Leftrightarrow m+1\ne m+2\left(\text{luôn đúng}\right)\)
Vậy \(m>-1;m< -2\)
a: Để đây là phương trình bậc nhất một ẩn thì 3m-2<>0
=>m<>2/3
b: x=-2 là nghiệm của phương trình
=>-2(3m-2)+5=m
=>-6m+4+5-m=0
=>9-7m=0
=>m=9/7
\(\left(3m-2\right)x+5=m\)
\(\Leftrightarrow\left(3m-2\right)x+5=0\)
Để PT trên là bậc nhất một ẩn thì :
\(3m-2\text{≠}0\) \(\Leftrightarrow3m\text{≠}2\Leftrightarrow m\text{≠}\dfrac{2}{3}\)
b) \(\left(3m-2\right)x+5=m\)
\(\Leftrightarrow\left(3m-2\right)\cdot2+5=m\)
\(\Leftrightarrow6m-4+5=m\)
\(\Leftrightarrow5m=-1\)
\(\Leftrightarrow m=\left(-1\right)\div5\)
\(\Leftrightarrow m=-\dfrac{1}{5}\)
Vậy \(m=-\dfrac{1}{5}\) thì phương trình nhận \(x=2\) nghiệm
Để phương trình có một trong các nghiệm là x=2 nên
Thay x=2 vào phương trình, ta được:
\(\left(m+2\right)^2-\left(2-3m\right)^2=0\)
\(\Leftrightarrow\left(m+2+2-3m\right)\left(m+2-2+3m\right)=0\)
\(\Leftrightarrow4m\cdot\left(-2m+4\right)=0\)
mà 4>0
nên m(-2m+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\-2m+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\-2m=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)
Vậy: Để phương trình có 1 trong các nghiệm là x=2 thì \(m\in\left\{0;2\right\}\)
`x=2` là nghiệm phương trình nên thay x=2 vào ta có:
`(2+m)^2-(2-3m)^2=0`
`=>(2+m-2+3m)(2+m+2-3m)=0`
`=>4m(4-2m)=0`
`=>m(2-m)=0`
`=>` \left[ \begin{array}{l}m=0\\m=1\end{array} \right.
(x + 1)(x + 2) = (2 - x)(x + 2)
<=> x2 + 2x + x + 2 = 4 - x2
<=> x2 + 3x + 2 = 4 - x2
<=> x2 + 3x + 2 - 4 + x2 = 0
<=> 2x2 + 3x - 2 = 0
<=> 2x2 + 4x - x - 2 = 0
<=> 2x(x + 2) - (x + 2) = 0
<=> (x + 2)(2x - 1) = 0
<=> x + 2 = 0 hoặc 2x - 1 = 0
<=> x = -2 hoặc x = 1/2
còn bài 2 nữa bạn