K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

Câu 1: Khi chia a cho 27, ta được số dư là 24 nên a có thể viết dưới dạng

                       a = 27 . k + 24 với k thuộc N

Vì 27k chia hết cho 3 và 24 chia hết cho 3 nên a chia hết cho 3.

Vì 27k không chia hết cho 8 và 24 chia hết cho 8 nên a không chia hết cho 8.

Câu 2 bạn xem lại đề đi. Nếu đúng thì nói với mk còn nếu sai thì bạn sửa  lại đi nhé

3 tháng 10 2016

1) Mik lấy VD luôn:

VD: số 51, 51 chia hết cho 3, 51 ko chia hết cho 6.

2) 

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.

14 tháng 12 2020

1/

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2

+ Nếu \(n⋮3\) Bài toán đã được c/m

+ Nếu n chia 3 dư 1 => \(n+2⋮3\)

+ Nếu n chia 3 dư 2 => \(n+1⋮3\)

Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3

2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau

\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)

\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)

\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4

3/

a/ Gọi 3 số TN liên tiếp là n; n+1; n+2

\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)

b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3

\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)

Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4

9 tháng 7 2018

Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi

9 tháng 8 2018

1)  Gọi thương của a khi chia cho 24 là: x

Ta có:\(a=24x+10=2\left(12x+5\right)\)\(⋮\)\(2\)

=> a chi hết cho 2

          \(a=24x+10\)

Nhận thấy:   \(24x\)\(⋮\)\(4\)nhưng   \(10\)không chia hết cho \(4\)

=> a không chia hết cho \(4\)

2)

a)  Gọi 2 số tự nhiên liên tiếp là: \(a;\)\(a+1\)

nếu: \(a=2k\)thì \(a⋮2\)

nếu:  \(a=2k+1\)thì:  \(a+1=2k+1+1=2k+2\)\(⋮\)\(2\)

Vậy trong 2 số tự nhiên liên tiếp luôn tồn tại 1 số chhia hết cho 2

b) ktra lại đề

31 tháng 12 2018

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 

11 tháng 10 2015

tick đúng nha tui nghèo lắm

11 tháng 10 2015

1)a)

gọi 3 số đó là a;a+1:a+2

ta có: a+(a+1)+(a+2)=3a+3

mà 3 chia hết cho 3 nên 3a+3 chia hết cho3 

b) goij4 số đó là a;a+1;a+2;a+3;a+4

ta có tổng sẽ là: 4a+10

mà 10 ko chia hết cho 4 nên tổng 4 số trên ko chia hết cho 4

29 tháng 3 2020

a)Gọi 3 STN liên tiếp đó là a,a+1,a+2

Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3

b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3

Ta có: a+(a+1)+(a+2)+(a+3)=4a+6

4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4

c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858

d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430

a)Gọi 3 STN liên tiếp đó là a,a+1,a+2

Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3

b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3

Ta có: a+(a+1)+(a+2)+(a+3)=4a+6

4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4

31 tháng 12 2018

d,

 Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm 

31 tháng 12 2018

c,

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 

27 tháng 8 2021

a, 

Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh.

Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)

Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2

Ta có: 2k ⋮ 2; 2 ⋮ 2

Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2

Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2

Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^

27 tháng 7 2017

a) hai số liên tiếp thì sẽ có 1 số chẵn và  1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2

3 tháng 8 2019

a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2 

b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3 

c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2 

d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3