Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x^2y-xy^2+5x^2\right):8xy\)
\(=3x^2y:8xy-xy^2:8xy+5x^2:8xy\)
\(=\dfrac{3}{8}x-\dfrac{1}{8}y+\dfrac{\dfrac{5}{8}x}{y}\)
a)\(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}=\dfrac{\left(x-y\right)^2\left[3\left(x-y\right)^2+2\left(x-y\right)-5\right]}{\left(x-y\right)^2}=3x^2-6xy+3y^2+2x-2y-5\)
b) \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}=x-2y\)
c) \(\dfrac{x^3+y^3}{x+y}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}=x^2-xy+y^2\)
a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)
\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)
\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)
b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)
\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)
=x-2y
c: \(\dfrac{x^3+y^3}{x+y}\)
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)
\(=x^2-xy+y^2\)
Đơn thức A chia hết cho đơn thức B khi mỗi biến trong B cũng là mỗi biến trong A với số mũ không lớn hơn số mũ của nó trong A.
Đa thức A chia hết cho đơn thức B khi mỗi hạng tử trong A đều chia hết cho đơn thức B.
Đa thức A chia hết cho đa thức B khi tìm được đa thức Q sao cho A= B.Q
\(=\dfrac{4x^3-12x^2+8x^2-24x+19x-57+72}{x-3}\)
\(=4x^2+8x+19+\dfrac{72}{x-3}\)
Hạng tử y 6 của đa thức A không chia hết cho đơn thức B = 2x.
Do đó, đa thức A không chia hết cho đơn thức B
Chọn đáp án A
a) A=5xny3 chia hết cho B=4x3y
ta có:
5xny3 : 4x3y = \(\dfrac{5}{4}\) x n-3 y2
để A \(⋮\) B thì : n - 3 \(\ge\) 0
n \(\ge\) 3
A = 5xny3 chia hết cho B = 4x3y
ta có
5xny3 : 4x3y = \(\dfrac{5}{4}\) xn-3y2
để A chia hết cho B thì n - 3 \(\ge\) 0
n \(\ge\) 3
a) \(2x^2\left\{x^2+5x+6\right\}\)=\(2x^4+10x^3+12x^2\)
b) \(15x^2y^4:10x^2y\)=\(\frac{3}{2}y^3\)
c) \(\left\{16x^3y^2+20x^2y^3-8xy\right\}:4xy\)=\(4x^2y+5xy^2-2\)