K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

Ta có: \(5^{12}< 5^{13}\)

\(\Rightarrow5^{12}-1< 5^{13}+1\)

\(\Rightarrow m=\frac{5^{12}-1}{5^{13}+1}< 1\)

\(\Rightarrow m>\frac{5^{12}-1-4}{5^{13}+1+4}\)

\(\Rightarrow m>\frac{5^{12}-5}{5^{13}+5}\)

\(\Rightarrow m>\frac{5\left(5^{11}-1\right)}{5\left(5^{12}+1\right)}\)

\(\Rightarrow m>\frac{5^{11}-1}{5^{12}+1}\)

\(\Rightarrow m>n\)

20 tháng 2 2020

a) =-5/7 +7/8-2/7+1/8- -1/12+ -13/12

=(-5/7-2/7)+(7/8+1/8)-(-1/12--13/12)

=-7/7+8/8 - 12/12

= -1+1+1

=1

b)= ( -3/8+11/8)-(12/11+ -1/11)+(-3/5- 2/5)

= 1- 1 + (-1)

=-1

20 tháng 2 2020

dễ lắm ó

10 tháng 4 2016

đặt A=\(\frac{5^{12}+1}{5^{13}+1}\);B=\(\frac{5^{11}+1}{5^{12}+1}\);C= \(\frac{5^{11}-1}{5^{12}-1}\)

ta có:nhân A,B,C với 5 ta đc:\(5A=\frac{5\left(5^{12}+1\right)}{5^{13}+1}=\frac{5^{13}+5}{5^{13}+1}=\frac{5^{13}+1+4}{5^{13}+1}=\frac{5^{13}+1}{5^{13}+1}+\frac{4}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)

\(5B=\frac{5\left(5^{11}+1\right)}{5^{12}+1}=\frac{5^{12}+5}{5^{12}+1}=\frac{5^{12}+1+4}{5^{12}+1}=\frac{5^{12}+1}{5^{12}+1}+\frac{4}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)

\(5C=\frac{5\left(5^{11}-1\right)}{5^{12}-1}=\frac{5^{12}-5}{5^{12}-1}=\frac{5^{12}-1-4}{5^{12}-1}=\frac{5^{12}-1}{5^{12}-1}-\frac{4}{5^{12}-1}=1-\frac{4}{5^{12}-1}\)

vì 513+1>512+1>512-1

=>\(\frac{4}{5^{12}-1}>\frac{4}{5^{12}+1}>\frac{4}{5^{13}+1}\)

\(\Rightarrow1+\frac{4}{5^{12}-1}>1+\frac{4}{5^{12}+1}>1+\frac{4}{5^{13}+1}\)

=>5C>5B>5A

=>C>B>A

3 tháng 3 2018

 2 hoặc 42

3 tháng 3 2018

Giải như mà mình không chắc nha:

a) \(A=\frac{10^8+1}{10^9+1}\)và \(\frac{10^9+1}{10^{10}+1}\)

Ta có:

  \(\frac{10^8+1}{10^9+1}\Leftrightarrow\frac{10^8+1}{10^8+10+1}\Leftrightarrow\frac{1}{10+1}=\frac{1}{11}\)

\(\frac{10^9+1}{10^{10}+1}=\frac{10^8+10+1}{10^8+10+10+1}=\frac{10+1}{10+10+1}=\frac{11}{21}\)

Ta có: \(\frac{1}{11}< \frac{11}{21}\) Vậy ......

b) Bạn giải tương tự nha! Lười lắm :v

28 tháng 6 2016

công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)

nên ta có :  \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}\)\(=\frac{5^{12}+5}{5^{13}+5}=\frac{5.\left(5^{11}+1\right)}{5.\left(5^{12}+1\right)}=\frac{5^{11}+1}{5^{12}+1}\)

=> \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{11}+1}{5^{12}+1}\)

28 tháng 6 2016

đặt A và B = 2 cái kia rồi nhân nó với 5 là đc

14 tháng 3 2020

a,

A=1−3−5−7−9−...−97−99a)A=1−3−5−7−9−...−97−99 

=1−(3+5+7+...+99)=1−(3+5+7+...+99)

=1−(99+3).[(99−3):2+1]2=1−(99+3).[(99−3):2+1]2
=1−2499=−2498=1−2499=−2498

b)B=1+3−5−7+9+...+97−99b)B=1+3−5−7+9+...+97−99
=(−8)+(−8)+(−8)+...+(−8)+97−99=(−8)+(−8)+(−8)+...+(−8)+97−99
=(−8).12+(−2)=−98=(−8).12+(−2)=−98

c)C=1−3−5+7+9−11−13+15+...+97−99c)C=1−3−5+7+9−11−13+15+...+97−99
=0+0+0+0+0+...+0−99=0+0+0+0+0+...+0−99
=−99

29 tháng 8 2018

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)

\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)

\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)

\(A>10.\frac{1}{20}+10.\frac{1}{30}\)

\(A>\frac{1}{2}+\frac{1}{3}\)

\(A>\frac{5}{6}\)

Vậy \(A>\frac{5}{6}\)

Chúc bạn học tốt ~ 

29 tháng 8 2018

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)

\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)

\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)

\(A>\frac{1}{20}\times10+\frac{1}{30}\times10\)

\(A>\frac{1}{2}+\frac{1}{3}\)

\(A>\frac{5}{6}\)

Vậy \(A>\frac{5}{6}\)

11 tháng 4 2015

a)          ta có công thức \(\frac{a}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

ta có \(N=\frac{5^2}{5.10}+\frac{5^2}{10.15}+...+\frac{5^2}{2005.2010}\)

\(N=5\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2005.2010}\right)\)

 \(N=5\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)(sử dụng quy tắc dấu ngoặc)

\(N=5\left[\frac{1}{5}-\left(\frac{1}{10}-\frac{1}{10}\right)-\left(\frac{1}{15}-\frac{1}{15}\right)-...-\left(\frac{1}{2005}-\frac{1}{2005}\right)-\frac{1}{2010}\right]\)

\(N=5\left[\frac{1}{5}-0-0-...-0-\frac{1}{2010}\right]\)

\(N=5\left[\frac{1}{5}-\frac{1}{2010}\right]\)

\(N=5.\frac{401}{2010}\)

\(N=\frac{401}{402}\)

b)         \(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)

               ta thấy      \(\frac{1}{11}=\frac{1}{11}\)

                                \(\frac{1}{12}

27 tháng 7 2017

ta có :

ts của a=tử số của b

mà ms của a<ms của b

suy ra a>b

27 tháng 7 2017

sai bét