Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
hay \(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)
\(\frac{b}{c}=\frac{a+b+c}{b+c+d}\)
\(\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
Nhân vế theo vế của 3 đẳng thức trên ta có:
\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
mà \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)
Bài 2: Không làm được, thông cảm. Gợi ý: Áp dụng chia tỉ lệ
Gọi 3 chữ số của số đó là \(a,b,c(a,b,c\in \mathbb{N^*})\)
Áp dụng tc dtsbn:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{18}{6}=3\\ \Leftrightarrow\left\{{}\begin{matrix}a=3\\b=6\\c=9\end{matrix}\right.\left(tm\right)\)
Vậy số đó là 396 hoặc 936
Gọi chữ số nhỏ nhất là x
=> Ba chữ số theo tỉ lệ là: x, 2x, 3x với 3x ≤ 9
=> x ≤ 3 (1)
Vì số cần tìm chia hết cho 18, nghĩa là chia hết cho 9
Nên (x + 2x + 3x) = 6x chia hết cho 9
=> x chia hết cho 3 (2)
Từ (1) & (2), suy ra: x = 3
=> Ba chữ số là 3, 6, 9
Theo đề bài số cần tìm chia hết cho 18 (18 là số chẵn), nghĩa là chia hết cho 2, vậy chữ số cuối phải là 6
=> Số cần tìm là 396 hoặc 936
Giải
Gọi số đó có dạng abc (Số có 3 chữ số)
Vì abc \(⋮\) 18 \(\Rightarrow\) abc \(⋮\) 9 \(\Rightarrow\left(a+b+c\right)⋮9\)
Mà 1 ≤ a + b + c ≤ 27 (Do a, b, c nhận các giá trị tự nhiện từ 1 đến 9)
\(\Rightarrow\) a + b + c nhận một trong ba số: 9; 18; 27 ( 1 )
Mà a1 = b2 = c3 = a + b + c6 ( 2 )
Từ (*) và (**) ta có (a + b + c) =18 (Chia hết cho 6)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}a=3\\b=6\\c=9\end{cases}}\)
Nhưng vì số đó chia hết cho 18 nên chữ số hàng đơn vị là 6
Vậy ta có 2 đáp số thỏa mãn: 396 và 936