Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tổng của SBC và SC là:
195 - 3 = 192
Nếu SBC chia hết cho SC và thương vẫn không đổi thì tổng của SBC và SC là:
192 - 3 = 189
Tổng số phần bằng nhau là:
6 + 1 = 7 ( phần )
SC là:
189 : 7 x 1 = 27
SBC là:
27 x 6 + 3 = 165
2. Hiệu số phần bằng nhau là:
6 - 1 = 5 ( phần )
SBC là:
54 : 5 x 6 = 64,8
SC là:
64,8 - 54 = 10,8
gọi \(S=1+2+2^2+2^3+...+2^{2015}\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow2S-S=S=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+2^{2016}-1=2^{2016}-1\)
\(2^{2016}-1⋮2^{2016}-1\Rightarrow2^{2016}-1+1=2^{2016}:2^{2016}-1\)dư 1
\(\Rightarrow2^{2016}+2^{2016}+2^{2016}+2^{2016}\)dư 1+1+1+1=4\(\Rightarrow4\cdot2^{2016}=2^2\cdot2^{2016}=2^{2018}:2^{2016}-1\)dư 4
\(\Rightarrow2^{2018}:S\)dư 4
1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017
= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)
= 1 + 0 + 0 + 0 + .........+ 0
= 1
Giả sử a là số nguyên tố chia 12 dư 9
=> a = 12k + 9 ( k \(\in\)N* )
= 3(4k + 3 ) chia hết cho 3
=> a chia hết cho 3. Mà a là số nguyên tố
=> a = 3
Mà 3 chia 12 dư 3
=> Điều giả sử trên là sai !
Vậy không có số nguyên tố nào chia 12 dư 9
Nếu chia cho 1 thì số dư =0
nếu chia \(\frac{3^{2017}-1}{2}-1\) thì số dư xẽ là 1