K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

1/ \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}vàx+y-z=-21\)

-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{-21}{7}=-3\)

-Suy ra: \(\frac{x}{6}=-3\Rightarrow x=-18\)

\(\frac{y}{4}=-3\Rightarrow y=-12\)

\(\frac{z}{3}=-3\Rightarrow z=-9\)

vậy x=-18;y=-12;z=-9

2) a/y=f(x)=x^2-8

\(\Rightarrow\)y= f(3)=3^2-8=1

\(\Rightarrow\)y=f(-2)=(-2)^2-8=-4

vậy f(3)=1;f(-2)=-4

b/y=17=x^2-8

x^2-8=17

x^2=17+8

x^2=25

x^2=5^2

x=5

vậy x=5

NV
13 tháng 12 2021

a.

\(f\left(3\right)=3^2-8=9-8=1\)

\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)

b.

\(y=17\Rightarrow x^2-8=17\)

\(\Rightarrow x^2=25\)

\(\Rightarrow x=\pm5\)

13 tháng 12 2021
Anser reply image 50% đúng  
29 tháng 12 2021

a: f(3)=1

f(-2)=-14

21 tháng 12 2020

a) Thay x=-2 vào hàm số \(f\left(x\right)=2x^2-5\),ta được: 

\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=8-5=3\)

Thay x=1 vào hàm số \(f\left(x\right)=2x^2-5\), ta được: 

\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)

Thay x=3 vào hàm số \(f\left(x\right)=2x^2-5\), ta được: 

\(f\left(3\right)=2\cdot3^2-5=2\cdot9-5=18-5=13\)

Vậy: f(-2)=3

f(1)=-3

f(3)=13

b) Để f(x)=3 thì \(2x^2-5=3\)

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=3 thì \(x\in\left\{2;-2\right\}\)

23 tháng 12 2020

còn câu c đâu bạn???

 

24 tháng 12 2021

a: f(-3)=10

f(0)=-8

f(1)=-6

f(2)=0

b: f(x)=0

=>(x-2)(x+2)=0

=>x=2 hoặc x=-2

a: \(F=x^3y^2z-xy^2z^3\)

Khi x=3; y=-2; z=1 thì \(F=3^3\cdot\left(-2\right)^2\cdot1-3\cdot\left(-2\right)^2\cdot1^3=27\cdot4-3\cdot4=96\)

c: x=-y; y=2z

nên x=-2z

Thay x=-2z; y=2z vào F=-1/8, ta được:

\(\left(-2z\right)^3\cdot\left(2z\right)^2\cdot z-\left(-2z\right)\cdot\left(2z\right)^2\cdot z^3=\dfrac{-1}{8}\)

=>\(-8z^3\cdot4z^2\cdot z+2z\cdot4z^2\cdot z^3=\dfrac{-1}{8}\)

\(\Leftrightarrow-24z^6=\dfrac{-1}{8}\)

\(\Leftrightarrow z^6=\dfrac{1}{192}\)

hay \(z=\pm\dfrac{1}{2\sqrt{3}}\)

19 tháng 6 2019

a) \(f\left(x\right)=\frac{x+2}{x-1}\)

\(f\left(x\right)=\frac{1}{4}\Leftrightarrow\frac{x+2}{x-1}=\frac{1}{4}\)

\(\Leftrightarrow4\left(x+2\right)=x-1\)

\(\Leftrightarrow4x+8=x-1\)

\(\Leftrightarrow4x-x=-1-8\)

\(\Leftrightarrow3x=-9\)

\(\Leftrightarrow x=-3\)

Vậy x = -3 thì hàm số y = f(x) = \(\frac{1}{4}\)

b) \(f\left(x\right)=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để f(x) nguyên thì \(\frac{3}{x-1}\)nguyên

hay \(3⋮\left(x-1\right)\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng:

\(x-1\)\(1\)\(-1\)\(3\)\(-3\)
\(x\)\(2\)\(0\)\(4\)\(-2\)

Vậy \(x\in\left\{2;0;4;-2\right\}\) thì f(x) nguyên

19 tháng 6 2019

a) Ta có: f(x) = 1/4

=> \(\frac{x+2}{x-1}=\frac{1}{4}\)

=> \(4\left(x+2\right)=x-1\)

=> 4x + 8 = x - 1

=> 4x - x = -1 - 8

=> 3x = -9

=> x = -3

b) Ta có: \(f\left(x\right)=\frac{x+2}{x-1}=\frac{\left(x-1\right)+3}{x-1}=1+\frac{3}{x-1}\)

Để f(x) có giá trị nguyên <=> \(3⋮x-1\) <=> \(x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng :

   x - 1   1   -1   3   -3
   x   2   0    4   -2

Vậy ...