K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :

a) Gọi 3 số nguyên liên tiếp là :\(n-1,n,n+1\)

\(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3

Gọi năm số nguyên liên tiếp là \(n-2,n-1,n,n+1,n+2\).Ta có :

\(\left(n+2\right)+\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=5n\)chia hết cho 5 

b) Gọi 2 số nguyên liên tiếp là \(n,n+1\): Ta có 

\(n+\left(n+1\right)=2n+1\)

Vì \(2n⋮2,\)\(1\)không chia hết cho \(2\)nên \(2n+1\)không chia hết cho 2 

Vậy tổng hai số nguyên liên tiếp không chia hết cho 2

Gọi 4 số nguyên liên tiếp là ;\(n-1,n,n+1,n+2\).Ta có :

\(\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=4n+2\)

Vì \(4n⋮4,\)2 không chia hết cho 4  nên \(4n+2\)không chia hết cho 4

Nhận xét : Tổng của k só nguyên liên tiếp chia hết cho k khi và chỉ khi k lẻ

Chúc bạn học tốt ( -_- )

22 tháng 2 2020

a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3 
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5

chúc bạn học tốt !!!

11 tháng 2 2017

1/ Gọi 3 số nguyên liên tiếp đó là a; a + 1; a + 2

Trong 3 số nguyên liên tiếp có ít nhất 1 số chia hết cho 3, ta cho số đó là a

Ta có: a + a + 1 + a + 2 = a + a + a + 1 + 2 = 3a + 3

mà 3a và 3 chia hết cho 3

=> Tổng 3 số nguyên liên tiếp chia hết cho 3 (điều cần chứng minh)

22 tháng 1 2020

C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2

ta có: 

a+(a+1)+(a+2)

=3a+3

=3(a+1) => chia hết cho 3 

22 tháng 1 2020

d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4 

Ta có: a + a+1 + a+2 +a+3 +a+4

         =5a +10

        =5(a+2) => chi hết cho 5

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

9 tháng 1 2016

Câu  1: a) Gọi 3 số đó là a ;a+1;a+2

Ta có: a+a+1+a+2=3a+3 

3 chia hết cho 3 => 3a chia hết cho 3

=> 3a+3  chia hết cho 3 

=> Tổng của 3 số tự nhiên liên tiếp luon chia hết cho 3 

b) Gọi 5 số đó là a;a+1;a+2;a+3;a+4 

Ta có: a+a+1+a+2+a+3+a+4 =5a+5 

5 chia hết cho 5 => 5a chia hết cho 5 

=> Tổng của 5 số tự  nhiên liên tiếp luôn chia hết cho 5 

Câu 2 :Tụ làm nhé , mk chịu lun à 

24 tháng 1 2020

1)

a)

Gọi 3 STN liên tiếp là a;a+1;a+2

Ta có:a+(a+1)+(a+2) 

=3a+3 

=3(a+1) chia hết cho 3

=>ĐPCM

2)

a)3n chia hết cho n-1

Ta có 3n=3n-3+3

               =3(n-1)+3

Vì 3(n-1) chia hết cho (n-1)

Để [3(n-1)+3] chia hết cho (n-1)<=>3 chia hết cho (n-1)<=> (n-1) thuộc Ư(3)

Ta có Ư(3)={1;3;-1;-3}

+n-1=-3=>n=-2

+n-1=-1=>n=0

+n-1=1=>n=2

+n-1=3=>n=4

Vậy n thuộc{0;2;-2;4} thì 3n chia hết cho (n-1)

Những câu dưới tương tự

19 tháng 2 2020

*Mình chỉ làm mẫu vài bài thôi nhé!! Chứ mình lười lắm!!* 😊

1) 

a,

Gọi 3 số nguyên liên tiếp là k;k+1;k+2(k thuộc Z)

Tổng của 3 số nguyên đó là:

k+(k+1)+(k+2)=k+k+1+k+2=3k+3=3(k+1)

Mà 3(k+1) chia hết cho 3 => (đpcm)

2)

a,    3n chia hết cho n-1

=>  (3n-3)+3 chia hết cho n-1

=> [3(n-1)]+3 chia hết cho n-1

Vì n-1 chia hết cho n-1

Nên 3(n-1) chia hết cho n-1

=> 3 chia hết cho n-1

Hay n-1 thuộc Ư(3)={1;-1;3;-3}

Do đó: n thuộc {2;0;4;-2}

b, Để 2n+7 là bội của n-3 thì:

       2n+7 chia hết cho n-3

=> (2n-6)+13 chia hết cho n-3

=> [2(n-3)]+13 chia hết cho n-3

Vì n-3 chia hết cho n-3 

Nên 2(n-3) chia hết cho n-3

=> 13 chia hết cho n-3

Hay n-3 thuộc Ư(13)={1;-1;13;-13}

Do đó: n thuộc {4;2;16;-10}

c, Để n+2 là ước của 5n-1 thì:

      5n-1 chia hết cho n+2

=> (5n+10)-11 chia hết cho n+2

=> [5(n+2)]-11 chia hết cho n+2

Vì n+2 chia hết cho n+2

Nên 5(n+2) chia hết cho n+2

=> 11 chia hết cho n+2

Hay n+2 thuộc Ư(11)={1;-1;11;-11}

Do đó: n thuộc {-1;-3;9;-13}

3) Gọi 2 số nguyên cần tìm là x và y(x,y thuộc Z)

Theo đề, ta có:

xy=x-y => xy-(x-y)=0 => xy-x+y=0

=> x(y-1)+y=0 => x(y-1)+y-1=-1

=> (x+1)(y-1)=-1 

Mặt khác: -1=(-1).1=1.(-1)

~Rồi bạn xét hai trường hợp nhé!!

*Đúng nhớ tk giúp 😊*

18 tháng 4 2020

Đáp án:

Giải thích các bước giải:

a/Gọi 3 số tự nhiên liên tiếp là a;a+1;+2

 ta có:a+(a+1)+(a+2)=3a+3=3.(a+1) chia hết cho3

các câu sau làm tương tự

Tham Khảo

18 tháng 4 2020

Chứng tỏ rằng 

a) Tổng của ba số nguyên liên tiếp chia hết cho 3

Gọi 3 số lẻ liên tiếp đó là a , a + 2 , a + 4

Tổng của ba số đó là : a + a + 2 + a + 4 = ( a + a + a ) + ( 2 + 4 ) = 3a + 6

mà \(3a⋮3\)và \(6⋮3\)=> \(3a+6⋮3\)hay tổng ba số nguyên liên tiếp chia hết cho 3 ( đpcm )

b) Tổng của 5 số nguyên liên tiếp chia hết cho 5

Gọi 5 số nguyên lẻ liên tiếp đó là a , a + 2 , a + 4 , a + 6 , a + 8

Tổng của năm số đó là : a + a + 2 + a + 4 + a + 6 + a + 8 = ( a + a + a + a + a ) + ( 2 + 4 + 6 + 8 ) = 5a + 20

mà \(5a⋮5\)và \(20⋮5\)=> \(5a+20⋮5\)hay tổng năm số nguyên liên tiếp chia hết cho 5 ( đpcm )

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3