K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 2

1. Đã giải

2.

Xếp 10 cái bánh thành hàng ngang, 10 cái bánh tạo ra 9 khe trống (mà khe trống này nằm giữa 2 cái bánh)

Đặt 2 vách ngăn vào 9 vị trí nói trên, 2 vách ngăn sẽ chia 10 cái bánh làm 3 phần sao cho mỗi phần có ít nhất 1 cái bánh. Vậy có \(C_9^2\) cách đặt 2 vách ngăn hay có \(C_9^2\) cách chia 10 cái bánh cho 3 người sao cho mỗi người có ít nhất 1 cái bánh.

NV
2 tháng 2

Xếp 4 bạn nữ: có \(4!\) cách

4 bạn nữ tạo ra 5 khe trống, xếp 2 bạn nam vào 5 khe trống đó: \(A_5^2\) cách

Vậy tổng cộng có \(4!.A_5^2\) cách xếp thỏa mãn

a: SỐ cách xếp là;

5!*6!*2=172800(cách)

b: Số cách xếp là \(6!\cdot5!=86400\left(cách\right)\)

 

10 tháng 2 2023

Để 2 học sinh nam ko ngồi đối diện và ngồi cạnh nhau nên ta có 2 lựa chọn
     Lựa chọn 1 : 7 bạn nam ngồi lần lượt vào các vị trí ghế 1,3,5,7,9 vá các bạn nữ ngồi 2,4,6,8,10,12,14
 Khi đó: ghế số 1 có 7 lựa chon
              ghế số 2 có 6 lựa chọn
              ghế số 3 có 5 lựa chon
               ghế số 4 có 4 lựa chon
               ghế số 5 có 3  lựa chon
                ghế số 6 có 2 lựa chon
               ghế số 7 có 1 lựa chon
 => có 7x6x5x4x3x2x1 = 5040 cách xếp các bạn nam 
   Tương tự cũng sẽ có   5040 cách xếp các bạn nữ

   Lựa chọn 2: Các bạn nam ngồi vào các ghế số 2,4,6,8,10,12,14
  =>  Tương tự ta cũng có 5040 cách xếp các bạn nam
      và 5040 cách xếp các bạn nữ 
 
 Vậy qua 2 lựa chọn ta có 5040x4= 20160 cách xếp 

Số cách chọn là:

\(C^1_4\cdot C^2_5+C^2_4\cdot5+C^3_4=74\left(cách\right)\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số cách chọn ba học sinh bất kì là: \(C_{40}^3 = 9880\)

b)    Số cách chọn ba học sinh gồm 1 nam và 2 nữ là: \(C_{25}^1.C_{15}^2 = 2625\)

c)     Số cách chọn 3 học sinh trong đó không có học sinh nam là: \(C_{15}^3 = 455\)

Số cách chọn 3 học sinh trong đó có ít nhất một học sinh nam là: \(9880 - 455 = 9425\)

NV
21 tháng 4 2023

Không gian mẫu: \(12!\)

Xếp 8 nam: có \(8!\) cách

8 nam tạo thành 9 khe trống, xếp 4 nữ vào 9 khe trống này: \(A_9^4\) cách

\(\Rightarrow8!.A_9^4\) cách

Xác suất: \(P=\dfrac{8!.A_9^4}{12!}=\)

NV
21 tháng 4 2023

Câu này có thể coi như không giải theo cách gián tiếp được (thực ra là có giải được nhưng ko ai giải kiểu đó hết), nó bao gồm các trường hợp 4 nữ cạnh nhau, 3 nữ cạnh nhau, 2 nữ cạnh nhau, trong đó trường hợp trước còn bao hàm trường hợp sau cần loại trừ nữa

4 tháng 3 2023

Chọn hai học sinh từ tổ sao cho 2 học sinh cùng giới có 2 công đoạn

\(CD_1:\) Chọn 1 bạn nữ trong 5 bạn nữ \(\Rightarrow\) Có 5 cách chọn

\(CD_2:\) Chọn 1 bạn nam trong 4 bạn nam \(\Rightarrow\) Có 4 cách chọn

Áp dụng quy tắc nhân, ta có : \(5.4=20\) ( cách chọn )

Vậy có 20 cách chọn 2 học sinh từ tổ để 1 bàn có 2 học sinh cùng giới

 

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:
Chọn 2 học sinh cùng giới tính nam, có: $C^2_4=6$ cách

Chọn 2 học sinh cùng giới tính nữ, có: $C^2_5=10$ cách

Tổng số cách chọn: $6+10=16$ (cách)

2 tháng 5 2023

 Số cách chọn 7 em bất kì trong ba khối:  \(C|^7_{18}=31824\) (cách)

- Số cách chọn 7 em đi trong 1 khối:

                \(C^7_7=1\) (cách)

- Số cách chọn 7 em đi trong 2 khối:

+) 7 em trong khối 12 và 11:

       \(C^7_{13}-C^7_7=1715\) (cách)

+) 7 em trong khối 12 và 10:

       \(C^7_{12}-C^7_7=791\) (cách)

+) 7 em trong khối 11 và 10:

      \(C^7_{11}=330\) (cách)

 Số cách chọn 7 em đi có cả ba khối:

       31824 - 1 -1715 -  791 - 330 = 28987(cách)