Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a, có số đo 4 góc của tứ giác ABCD lafn lượt tỉ lệ với 5, 8, 13, 10
\(\Rightarrow\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\)
\(\Rightarrow\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{5+8+13+10}=\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\) mà ^A + ^B + ^C + ^D = 360 do tứ giác ...
\(\Rightarrow\frac{360}{36}=10=\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\)
\(\Rightarrow\widehat{A}=50;\widehat{B}=80;\widehat{C}=130;\widehat{D}=100\)
b, xét ΔABF có : ^ABF + ^BAF + AFB = 180 (định lí)
^ABF = 50 ; ^ABF = 80 (câu a)
=> ^AFB = 50
FM là phân giác của ^AFB
=> ^MFD = ^AFB : 2 (tính chất)
=> ^MFD = 50 : 2 = 25
^ADC + ^CDF = 180 (kề bù) mà ^ADC = 100 (câu a) => ^CDF = 80
ΔDMF có : ^MDA + ^DFM + ^DMF = 180 (định lí)
=> ^DMF = 75 (1)
ΔADE có : ^ADE + ^DAE + ^AED = 180 (Định lí)
^EAD = 50; ^ADE = 100
=> ^AED = 30 và (1)
ΔENM có : ^ENM + ^EMN + ^MNE = 180
=> ^ENM = 75 = ^EMN
=>ΔEMN cân tại E mà EO là pg của ^NEM (gt)
=> EO đồng thời là trung tuyến của ΔNEM (định lí)
=> O là trung điểm của MN (định nghĩa)
hình tự kẻ
a: Xét ΔAOD có
\(\widehat{AOD}+\widehat{DAO}+\widehat{ODA}=180^0\)
\(\Leftrightarrow\widehat{AOD}+\dfrac{180^0}{2}=180^0\)
hay \(\widehat{AOD}=90^0\)
a) Ta thấy : A + B + C + D = 360°
Tự áp dụng tính chất dãy tỉ số bằng nhau ta có :
A = 144°
B = 108°
C = 72°
D = 36°
b) Vì DE , CE là phân giác ADC và ACD
=> EDC = ADE = 18°
=> BCE = ECD = 36°
Xét ∆DEC ta có :
EDC + DEC + ECD = 180°
=> DEC = 126°
Ta có : góc ngoài tại đỉnh C
=> 180° - BCD = 108°
Góc ngoài tại đỉnh D
=> 180° - ADC = 144°
Mà DF , CF là phân giác ngoài góc C , D
=> CDF = 72°
=> DCF = 54°
Xét ∆CDF ta có :
CDF + DFC + DCF = 180°
=> DFC = 44°
Giúp em với ạ, huhu