K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2016

2.P=\(\frac{3-a}{a+10}\)

a, để P>0 

TH1 3-a>0 và a+10 >0

=> a<3 và a> -10

=> -10<a<3

TH2 3-a<0 và a+10<0

=> a>3 và a<-10(vô lý)

Vậy để P>0 thì -10<a<3

b.để P<0

TH1 3-a<0 và a+10>0

        a>3 và a>-10 

         Vậy a>3

TH2 3-a>0 và a+10<0

   => a<3 và a<-10

Vậy a<-10

vậy để P<0 thì a >3 hoặc a<-10

23 tháng 5 2016

bài 3.

a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)

Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)

b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)

Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)

c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)

Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)

7 tháng 10 2020

1.

\(10x=|x+\dfrac{1}{10}|+|x+\dfrac{2}{10}|+...+|x+\dfrac{9}{10}| \ge 0\)

\(\Rightarrow x\ge0\)

\(pt\Leftrightarrow x+\frac{1}{10}+x+\frac{2}{10}+...+x+\frac{9}{10}=10x\)

\(\Leftrightarrow x=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{9}{2}\)

\(\Rightarrow x=\frac{9}{2}\)

7 tháng 10 2020

4.

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}4a=b+3c\left(1\right)\\4b=c+3a\left(2\right)\\4c=a+3b\left(3\right)\end{matrix}\right.\)

Từ \(\left(1\right);\left(2\right)\Rightarrow4a=b+3\left(4b-3a\right)\)

\(\Rightarrow12a=12b\Rightarrow a=b\left(4\right)\)

Từ \(\left(1\right);\left(3\right)\Rightarrow4c=a+3\left(4a-3c\right)\)

\(\Rightarrow12a=12c\Rightarrow a=c\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow a=b=c\left(đpcm\right)\)

29 tháng 8 2020

Mình thiếu nhé. Câu b chứng minh p(ở câu a) < t

a, \(p=\frac{x+y}{y+z}=\frac{\frac{a}{m}+\frac{b}{m}}{\frac{b}{m}+\frac{a+b}{m}}=\frac{\frac{a+b}{m}}{\frac{a+b^2}{m}}=\frac{a+b}{a+b^2}\)

\(\frac{\frac{1}{4}+\frac{1}{2}}{\frac{1}{2}+\frac{3}{4}}=\frac{\frac{1}{4}+\frac{2}{4}}{\frac{2}{4}+\frac{1+2}{4}}=\frac{1+2}{1+2^2}=\frac{3}{5}\)

Hok tốt !!!!!!!!!

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)