Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m+2=0\)
\(\Delta'=1-\left(-m+2\right)=m+3\)
Để (P) cắt (d) tại 2 điểm pb khi m > -3
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m+2\end{matrix}\right.\)
Ta có \(\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
Thay vào ta được \(4+4\left(m-2\right)=4\Leftrightarrow4m-4=4\Leftrightarrow m=2\)(tm)
\(\left\{{}\begin{matrix}\dfrac{9}{x+1}-6y=-3\\\dfrac{10}{x+1}+6y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{19}{x+1}=-19\\y=\dfrac{\dfrac{3}{x+1}+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
a) x^2 - 3x + 2 = 0
\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)
=> pt có 2 nghiệm pb
\(x_1=\frac{-\left(-3\right)+1}{2}=2\)
\(x_2=\frac{-\left(-3\right)-1}{2}=1\)
a) Dễ thấy phương trình có a + b + c = 0
nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2
b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)
Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3
Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2
Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )
Xét hpt \(\left\{{}\begin{matrix}\dfrac{x}{y}+2.\dfrac{y}{x}=3\left(1\right)\\2x^2-3y=-1\left(2\right)\end{matrix}\right.\) (đkxđ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\))
Từ (1) \(\Leftrightarrow\dfrac{x^2+2y^2}{xy}=3\Rightarrow x^2+2y^2=3xy\Leftrightarrow x^2-3xy+2y^2=0\)\(\Leftrightarrow x^2-xy-2xy+2y^2=0\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x-2y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y\\x=2y\end{matrix}\right.\)
Xét trường hợp \(x=y\), thay vào (2), ta có \(2x^2-3x=-1\Leftrightarrow2x^2-3x+1=0\) (3)
pt (3) có tổng các hệ số bằng 0 nên pt này có 2 nghiệm \(\left[{}\begin{matrix}x_1=1\\x_2=\dfrac{1}{2}\end{matrix}\right.\)(nhận)
Nếu \(x=1\Rightarrow y=1\) (vì \(x=y\)) (nhận)
Nếu \(x=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\) (nhận)
Vậy ta tìm được 2 nghiệm của hpt đã cho là \(\left(1;1\right)\) và \(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)
Xét trường hợp \(x=2y\), thay vào (2), ta có \(2.\left(2y\right)^2-3y=-1\Leftrightarrow8y^2-3y+1=0\) (4)
pt (4) có \(\Delta=\left(-3\right)^2-4.8.1=-23< 0\) nên pt này vô nghiệm.
Vậy hpt đã cho có tập nghiệm \(S=\left\{\left(1;1\right);\left(\dfrac{1}{2};\dfrac{1}{2}\right)\right\}\)
ĐKXĐ : \(y>-5\)
Đặt \(\left(x-2\right)^2=a>0\) và \(\frac{1}{\sqrt{y+5}=b}\)
Hệ phương trình đã cho trở thành : \(\hept{\begin{cases}2a+b=3\\a-2b=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}4a+2b=6\\a-2b=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5a=5\\a-2b=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=1\end{cases}}\)( Thỏa mãn )
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}=1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\\\sqrt{y+5}=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}=1}\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{y+5}=1\\\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\end{cases}\Leftrightarrow}\hept{\begin{cases}y+5=1\\\orbr{\begin{cases}x=3\\x=1\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=3\\y=-4\end{cases}}\\\hept{\begin{cases}x=1\\y=-4\end{cases}}\end{cases}}}\)
ĐKXĐ : y > -5
Đặt \(\hept{\begin{cases}\left(x-2\right)^2=a\\\frac{1}{\sqrt{y+5}}=b\end{cases}\left(a\ge0;b>0\right)}\)
Hpt đã cho trở thành \(\hept{\begin{cases}2a+b=3\\a-2b=-1\end{cases}}\)=> \(a=b=1\left(tm\right)\)
=> \(\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}}=1\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-4\end{cases}}or\hept{\begin{cases}x=1\\y=-4\end{cases}}\)(tm)
Vậy ...
a) Ta có: \(\left\{{}\begin{matrix}\sqrt{2}x-y=3\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}x-y=3\\\sqrt{2}x+2y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=1\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}\cdot\dfrac{-1}{3}=\dfrac{4\sqrt{2}}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4\sqrt{2}}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\dfrac{x}{2}-2y=\dfrac{3}{4}\\2x+\dfrac{y}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-8y=3\\2x+\dfrac{1}{3}y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{25}{3}y=\dfrac{10}{3}\\2x-8y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{5}\\2x=3+8y=3+8\cdot\dfrac{-2}{5}=-\dfrac{1}{5}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{2x-3y}{4}-\dfrac{x+y-1}{5}=2x-y-1\\\dfrac{x+y-1}{3}+\dfrac{4x-y-2}{4}=\dfrac{2x-y-3}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5\left(2x-3y\right)}{20}-\dfrac{4\left(x+y-1\right)}{20}=\dfrac{20\left(2x-y-1\right)}{20}\\\dfrac{4\left(x+y-1\right)}{12}+\dfrac{3\left(4x-y-2\right)}{12}=\dfrac{2\left(2x-y-3\right)}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y-4x-4y+4=40x-20y-20\\4x+4y-4+12x-3y-6=4x-2y-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-19y+4-40x+20y+20=0\\16x+y-10-4x+2y+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-34x+y=-24\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-102x+3y=-72\\12x+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-114x=-76\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\12\cdot\dfrac{2}{3}+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\3y=4-8=-4\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
a.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)
2)
\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)
\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)
1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)
Ta có: \(x^2+2y^2=9\)
\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)
\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)
\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)
\(\Leftrightarrow123m^2+206m-45=0\)
Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi
sao khó vậy,mình học lớp 9 mà tính mãi chẳng ra đáp án bài này từ lâu rùi
Bài 1 :
\(2+\sqrt{9}=2+3=5\)
Bài 2 :
Với \(x\ge0\)
\(B=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}+7}\right):\frac{5}{\sqrt{x}+7}\)
\(=\frac{\sqrt{x}+7-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}:\frac{5}{\sqrt{x}+7}\)
\(=\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}.\frac{\sqrt{x}+7}{5}=\frac{1}{\sqrt{x}+2}\)
Bài 3 :
\(\hept{\begin{cases}x+2y=4\left(1\right)\\x-2y=0\left(2\right)\end{cases}}\)Lấy (1) - (2) ta được :
\(4y=4\Leftrightarrow y=1\)
Thay y = 1 vào (1) ta được : \(x+2=4\Leftrightarrow x=2\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
1.
a, \(\left\{{}\begin{matrix}2x-3y=3\\-4x=3x-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=3\\-4x-3x=13\end{matrix}\right.\)\(\left\{{}\begin{matrix}-4x+6y=-6\\-4x-3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9y=-19\\-4x+6y=-6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=-\dfrac{19}{9}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=3\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=9\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=2\\\dfrac{3}{x}+\dfrac{3}{y}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\left(TM\right)\\y=\dfrac{1}{2}\left(TM\right)\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=3\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{10}{x}+\dfrac{5}{y}=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{x}=16\\\dfrac{10}{x}+\dfrac{5}{y}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{16}\left(TM\right)\\y=\dfrac{13}{7}\left(TM\right)\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}\sqrt{x+1}-3\sqrt{y-1}=-4\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\left(x\ge-1,y\ge1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x+1}-6\sqrt{y-1}=-8\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{y-1}=-10\\2\sqrt{x+1}-6\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-1}=2\\2\sqrt{x+1}-6\sqrt{y-1}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\y=5\left(TM\right)\end{matrix}\right.\)
Bài 1: