Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{45^{10}\times5^{20}}{75^{15}}=\frac{3^{20}\times5^{10}\times5^{20}}{3^{15}\times5^{30}}=3^5=243\)
a.=[ \(\frac{1}{5}\)x 5 ]5 b. \(\frac{102^3}{40^3}\)=[ \(\frac{102}{40}\)]3 c.=\(\frac{75^{10}.5^{20}}{75^{10}.75^5}\)=\(\frac{5^{20}}{75^5}\)
=15 =[ \(\frac{51}{20}\)]3
=1
a) \(\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.3^4}{3^5.2^8}=\frac{2^3}{3}=\frac{8}{3}\)
Ta có:
\(A=\frac{3}{1\cdot5}+\frac{3}{5\cdot10}+...+\frac{3}{100\cdot105}\)
\(=\frac{3}{5}\cdot\left(\frac{5}{1\cdot5}+\frac{5}{5\cdot10}+...+\frac{5}{100\cdot105}\right)\)
\(=\frac{3}{5}\cdot\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{105}\right)\)
\(=\frac{3}{5}\left(1-\frac{1}{105}\right)=\frac{3}{5}\cdot\frac{104}{105}=\frac{312}{525}\)
\(A=\frac{25^3.5^5}{6.5^{10}}\)
\(A=\frac{\left(5^2\right)^3.5^5}{6.5^{10}}\)
\(A=\frac{5^6.5^5}{6.5^{10}}\)
\(A=\frac{5^{11}}{6.5^{10}}\)
\(A=\frac{5}{6}\)
(Dùng phương pháp giảm ước)
\(=\frac{\left(5^2\right)^3.5^5}{6.5^{10}}\)
\(=\frac{5^6.5^5}{6.5^{10}}\)
\(=\frac{5^{11}}{6.5^{10}}\)
\(=\frac{5}{6}\)
VẬY \(A=\frac{5}{6}\)