Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left|\left(x-2\right)^{2019}\right|\ge0\\\left(y-1\right)^{2020}\ge0\end{matrix}\right.\forall x,y.\)
\(\Rightarrow\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\ge0\) \(\forall x,y.\)
Mà \(\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\le0.\)
\(\Rightarrow\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}=0\)
\(\Rightarrow\left(x-2\right)^{2019}+\left(y-1\right)^{2020}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2019}=0\\\left(y-1\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0+2\\y=0+1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{2;1\right\}.\)
Chúc bạn học tốt!
\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)
\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x>y\)
x-y-z=0
=>x=y+z và y=x-z và z=x-y
B=(1-z/x)(1-x/y)(1+y/z)+2023
\(=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{y+z}{z}+2023\)
\(=\dfrac{y}{x}\cdot\dfrac{-z}{y}\cdot\dfrac{x}{z}+2023=2023-1=2022\)
Cho ( x-1)^2018 +| y + 1 | = 0. Tính giá trị biểu thức P= x^ 2019 . Y^ 2020 : (2x + y) ^ 2019+ 2020.