Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(A=2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(2^2\right)^{30}=8^{10}+27^{10}+2^{60}\)
\(B=3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(2^3\right)^{20}=9^{10}+36^{10}+2^{60}\)
Vì \(8^{10}< 9^{10},27^{10}< 36^{10}\)nên A<B
230 = 23.10= 810
330=33.10=2710
430=43.10=6410
Vế trái = 810 + 2710 + 6410
320=32.10=910
620=62.10=3610
820=82.10=6410
vế phải = 910 + 3610 + 6410
Vì 6410=6410 ; 3610 > 2710 ; 910 > 810
=> vế phải > vế trái
Ta có:\(2^{30}=\left(2^3\right)^{10}=8^{10}< 9^{10}=\left(3^2\right)^{10}=3^{20}\)
\(3^{30}=3^{20}.3^{10}< 3^{20}.4^{10}=3^{20}.\left(2^2\right)^{10}=3^{20}.2^{20}=\left(3.2\right)^{20}=6^{20}\)
\(4^{30}=4^{20}.4^{10}=4^{20}.\left(2^2\right)^{10}=4^{20}.2^{20}=\left(4.2\right)^{20}=8^{20}\)
nên \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
a. Dấu hiệu là số bao xi măng bán được hàng ngày trong một tháng
có tất cả 30 giá trị
a)- Dấu hiệu cửa hàng qtam là : số bao xi măng bán đc trong 30 ngày.
- Có 30 g/trị.
b) Số bao xi măng (x) 15 20 25 28 30 35 40
Tần số (n) 2 6 5 3 6 5 3
c) Máy mình nó bị tắt cam trc nên ko chụp đc ạ.
d) trung bình mỗi ngày bán đc số bao xi măng là :
x = 15.3+20.6+25.4+28.3+30.6+40.3
_________________________________________
30
= 834
______
30
= 412
______
15
= 27,46.
M0 = 30
ta có \(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{30}=\left(3^3\right)^{10}=27^{10}\)
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
ta có \(3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(6^{20}=\left(6^2\right)^{10}=36^{10}\)
\(8^{20}=\left(8^2\right)^{10}=64^{10}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}=8^{10}+27^{10}+64^{10}\)
\(\Rightarrow3^{20}+6^{20}+8^{20}=9^{10}+36^{10}+64^{10}\)
Xét \(8^{10}
Ta có: \(2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(4^3\right)^{10}=8^{10}+27^{10}+64^{10}\)
\(3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(8^2\right)^{10}=9^{10}+36^{10}+64^{10}\)
Vì \(8< 9\)\(\Rightarrow8^{10}< 9^{10}\)
mà \(27< 36\)\(\Rightarrow27^{10}< 36^{10}\)
\(\Rightarrow8^{10}+27^{10}< 9^{10}+36^{10}\)
\(\Rightarrow8^{10}+27^{10}+64^{10}< 9^{10}+36^{10}+64^{10}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
so sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20
2^30 = ( 2^3)^10 = 8^ 10
3^30 = (3^3)^10 = 27^10
4^30 = (4^3)^10 = 64^10
3^20 = (3^2)^10 = 9^10
6^20 = (6^2) = 36^10
8^20 = (8^2)^10 = 84^10
vì 9^10 > 8^10
36^10 > 27^10
84^10 > 64^10
=> 2^30 + 3^30 + 4^30 < 3^20 + 6^20 + 8^20
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
20+20+20+30+30
=20x3+30x2
=60+60=120
tíc mình nha
20+20+20+30+30=120
k mk đi