Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x}{3y}=-\dfrac{1}{3}\\ \Rightarrow3y=2x:-\dfrac{1}{3}=\dfrac{2x.3}{-1}=-6x\\ \Rightarrow y=-\dfrac{6x}{3}=-2x\)
Thế \(y=-2x\) vào \(2x+3y^2=\dfrac{161}{4}\) được:
\(2x+3.\left(-2x\right)^2=\dfrac{161}{4}\\ \Leftrightarrow2x+12x^2-\dfrac{161}{4}=0\\ \Leftrightarrow48x^2+8x-161=0\\ \Leftrightarrow\left(48x^2+92x\right)+\left(-84x-161\right)=0\\ \Leftrightarrow4x\left(12x+23\right)-7\left(12x+23\right)=0\\ \Leftrightarrow\left(4x-7\right)\left(12x+23\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{4}\Rightarrow y=-\dfrac{2.7}{4}=-\dfrac{7}{2}\\x=-\dfrac{23}{12}\Rightarrow y=-2.-\dfrac{23}{12}=\dfrac{23}{6}\end{matrix}\right.\)
Vậy phương trình có nghiệm \(\left\{x;y\right\}=\left\{\dfrac{7}{4};-\dfrac{7}{2}\right\}\) hoặc \(\left\{x;y\right\}=\left\{-\dfrac{23}{12};\dfrac{23}{6}\right\}\)
c) Ta có:
2x=5y=>x/5=y/2
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/5=y/2=x-y/5-2=15/3=5
=> x=5.5=25; y=5.2=10
d)Đặt x/2=y/5=k
=> x=2k; y=5k=> xy=2k.5k=10k^2=10=> k^2=1=>k=\(\pm\)1
Với k=1=>x=2; y=5
Với k=-1=>x=-2; y=-5
Ta có
2x/3y=-1/3
2x/(-1)=3y/3
Áp dụng tính chất của dãy tỉ số bằng nhau
2x/(-1)=3y/3<=>2x+3y/(-1)+3=7/2
=>2x/(-1)=7/2=>x= -7/2
3y/3=7/2=>y=7/2
Ta có : \(\frac{2x}{3y}=\frac{-1}{3}\Leftrightarrow6x=-3y\Leftrightarrow\frac{x}{-3}=\frac{y}{6}\Leftrightarrow\frac{2x}{-6}=\frac{3y}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x}{-6}=\frac{3y}{18}=\frac{2x+3y}{-6+18}=\frac{7}{12}\)
Vậy : \(\hept{\begin{cases}\frac{2x}{-6}=\frac{7}{12}\\\frac{3y}{18}=\frac{7}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}\)
Ta có:
\(2x=3y=-2z\) hay \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-3}\)
Từ \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-3}\) suy ra \(\dfrac{2x}{6}=\dfrac{3y}{6}=\dfrac{4z}{-12}\)
Áp dụng tính chất cơ bản của phân số, ta có:
\(\dfrac{2x}{6}=\dfrac{3y}{6}=\dfrac{4z}{-12}=\dfrac{2x-3y+4z}{6-6+\left(-12\right)}=\dfrac{48}{-12}=-4\)
\(\Rightarrow x=-4\cdot3=-12\)
\(\Rightarrow y=-4\cdot2=-8\)
\(\Rightarrow z=\left(-4\right)\cdot\left(-3\right)=12\)
Áp dụng tính chất dãy tỉ số bằn nhau ta có
\(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)
Do đó
\(\frac{2x}{-1}=\frac{7}{4}\Rightarrow x=\frac{-7}{4}.\frac{1}{2}=\frac{-7}{8}\)
\(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}.3.\frac{1}{3}=\frac{7}{4}\)
Do 2x/3y = -1/3
=> 2x.3 = -1.3y
=> 2x = -y
=> -2x = y
Ta có: -2x + 3y = 7
=> y + 3y = 7
=> 4y = 7
=> y = 7/4
=> x = -7/4 : 2 = -7/8
Nhân chéo là ra thui ak
a) \(\frac{2x}{3y}=\frac{-1}{3}\) và 2x + 3y = 7
Ta có : \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{\left(-1\right)+3}=\frac{7}{2}\)
=> \(\hept{\begin{cases}2x=\frac{7}{2}\cdot\left(-1\right)=-\frac{7}{2}\\3y=\frac{7}{2}\cdot3=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-\frac{7}{2}\right):2=-\frac{7}{4}\\y=\frac{21}{2}:3=\frac{7}{2}\end{cases}}\)
b) 21x = 19y => \(\frac{21x}{399}=\frac{19y}{399}\)=> \(\frac{x}{19}=\frac{y}{21}\)
Áp dụng t/c dãy tỉ số = nhau ta có :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
=> x = -38,y = -42
\(a,\frac{2x}{3y}=-\frac{1}{3}\)và \(2x+3y=7\)
Theo bài ra ta có
\(\frac{2x}{3y}=-\frac{1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)
\(\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}\Rightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\3y=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}}\)
\(b,21x=19y\)và \(x-y=4\)
Theo bài ra ta có
\(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}\)
Áp dụng dãy tỉ số bằng nhau ta có
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
\(\hept{\begin{cases}\frac{x}{19}=-2\\\frac{y}{21}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-38\\y=-42\end{cases}}}\)
2x=3y=5z <=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}\)
Từ đó bạn có thế => x,y,z=
2x = 3y = 5z
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=15.5=75\\y=5.10=50\\z=6.5=30\end{cases}}\)
Vậy x = 75 ; y = 50 và z = 30
@@ Học tốt@@
## Chiyuki Fujito
Ta có \(\frac{2x}{3y}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2x}{-1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\y=\frac{7}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}\)
Vậy \(x=-\frac{7}{4};y=\frac{7}{2}\)
K chắc
Học tốt
## Mirai
Theo bài ra ta cs
\(\frac{2x}{3y}=-\frac{1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)và \(2x+3y=7\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}\Rightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\3y=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}}\)