K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Biểu thức bạn viết không phân tích được thành nhân tử.

Có lẽ đề ntn sẽ đúng hơn:

$(2x+3y+4z)^2-2(2x+3y+4z)(-2y-4z)+(-4z-2y)^2$

$=[(2x+3y+4z)-(-2y-4z)]^2$

$=(2x+5y+8z)^2$

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Yêu cầu đề là gì bạn cần viết rõ ra.

2 tháng 8 2021

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

2 tháng 8 2021

19 tháng 10 2017

theo giả thiết x^2-y^2-z^2=0 
<=> x^2-y^2=z^2 
Ta có (5x-3y+4z)(5x-3y+4z) = (5x-3y)^2-(4z)^2 
=25.x^2-30xy+9y^2 -16z^2 
=25.x^2-30xy+9y^2 -16(x^2-y^2) ( vì x^2-y^2=z^2) 
=25.x^2-30xy+9.y^2-16.x^2+16.y^2 
=9.x^2-30xy+25.y^2 
=(3x-5y)^2

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

4 tháng 7 2018

                    \(x^2+y^2+4z^2+2x+2y+4z+3=0\)

\(\Leftrightarrow\)\(\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(4z^2+4z+1\right)=0\)

\(\Leftrightarrow\)\(\left(x+1\right)^2+\left(y+1\right)^2+\left(2z+1\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y+1=0\\2z+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=-1\\z=-\frac{1}{2}\end{cases}}\)

Vậy....

4 tháng 7 2018

thank nha bạn

21 tháng 6 2021

`2x^2+3y^2+4z^2-2(x+y+z)+2`

`=2x^2-2x+1/2+3y^2-2y+1/3+4z^2-2z+1/4+11/12`

`=2(x-1/2)^2+3(y-1/3)^2+4(z-1/4)^2+11/12>=11/12`

Dấu "=" xảy ra khi \(\begin{cases}x=\dfrac12\\y=\dfrac13\\z=\dfrac14\\\end{cases}\)