Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba lớp có sỉ số lần lượt là: 36, 42,48 cùng xếp thành một số hàng dọc như nhau và không thừa người nào
=> Số hàng dọc nhiều nhất xếp được = ƯCLN(36; 42; 48) = 6
=> Số hàng dọc nhiều nhất là 6 hàng
Gọi số hàng dọc là: a ( a∈∈N* )
Theo đề bài, ta có: 54 : a
42 : a
48 : a
=> a ∈∈ƯCLN ( 54 ; 42 ; 48 )
54 = 2.3333
42 =2.3.7
48 =2424.3
ƯCLN ( 54; 42; 48 ) = 2.3 =6
vậy có thể chia đucợ nhiều nhất 6 hàng dọc
Vì số học sinh xếp đủ mà không bị lẻ nên số hàng dọc là ước chung của số học sinh 3 lớp 6A, 6B, 6C.
Số hàng dọc nhiều nhất cũng là ước chung lớn nhất của số học sinh ba lớp 6A, 6B, 6C.
Ta có: 54 = 2.33 42 = 2.3.7 48 = 24.3
ƯCLN(54; 42; 48) = 2.3 = 6
Vậy số hàng dọc nhiều nhất xếp được là 6 hàng.
Gọi số hàng dọc nhiều nhất có thể xếp được là a ( a ∈ N* )
Theo bài ra , ta có :
54 ⋮ a
42 ⋮ a
48 ⋮ a
=> a ∈ ƯC( 54 , 42 , 48 )
Vì 54 = 2 . 33
42 = 2 . 3 . 7
48 = 24 . 3
=> ƯCLN( 54 , 42 , 48 ) = 2 . 3 = 6
=> ƯC( 54 , 42 , 48 ) = { 1 ; 2 ; 3 ; 6 }
=> a ∈ { 1 ; 2 ; 3 ; 6 ]
Mà a lớn nhất
=> a = 6
Gọi số hàng dọc là a (a ∈ N*)
Khi đó ta có: 54 ⋮ a, 42 ⋮ a, 48 ⋮ a và a lớn nhất.
Do đó a là ƯCLN(54,42,48).
Tính được : a = 6.
Vậy, xếp được nhiều nhất là 6 hàng dọc
Gọi số hàng dọc là a (a ∈ N*)
Khi đó ta có: 54 ⋮ a, 42 ⋮ a, 48 ⋮ a và a lớn nhất.
Do đó a là ƯCLN(54,42,48).
Tính được : a = 6.
Vậy, xếp được nhiều nhất là 6 hàng dọc
Gọi a (hàng) là số hàng dọc nhiều nhất có thể xếp được. Ta có a = ƯCN(45,42,48)
Suy ra a = 3
Vậy số hàng dọc nhiều nhất có thể xếp được là 3 hàng.
Vì số học sinh xếp đủ nên số hàng dọc là ước chung của số học sinh 3 lớp
Số hàng dọc nhiều nhất cũng là ước chung lớn nhất của số học sinh ba lớp
Ta có: 54 = 2.33 42 = 2.3.7 48 = 24.3
ƯCLN(54; 42; 48) = 2.3 = 6
Vậy số hàng dọc nhiều nhất xếp được là 6 hàng