Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>-2x=90/91
hay x=-45/91
b: =>2x=-7
hay x=-7/2
c: ->-3x=-12
hay x=4
a) \(\frac{x}{7}=\frac{6}{28}\Rightarrow x=\frac{6.7}{28}\Rightarrow x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)
b) \(\frac{-5}{y}=\frac{15}{24}\Rightarrow y=\frac{\left(-5\right).24}{15}\Rightarrow y=-8\)
Vậy \(y=-8\)
c) \(\frac{x}{-3}=\frac{4}{12}\Rightarrow x=\frac{\left(-3.\right).4}{12}\Rightarrow x=-1\)
Vậy \(x=-1\)
a)\(\dfrac{x}{7}\)= \(\dfrac{6}{28}\)
x.28 = 6.7
x.28 = 42
x = 42 : 28
x = \(\dfrac{3}{2}\)
Vậy x = \(\dfrac{3}{2}\)
b)\(\dfrac{-5}{y}=\dfrac{15}{24}\)
-5.24 = y.15
-120 = y.15
-120:15 = y
-8 = y
Vậy y = -8
c)\(\dfrac{x}{-3}=\dfrac{1}{3}\)
x = 1
Vậy x = 1
a, \(\frac{X}{3}=\frac{5}{Y}\Rightarrow XY=3.5=15\Rightarrow X.Y=15\)
\(\Rightarrow\)X = 1 thì Y = 15
\(\Rightarrow\)X = 3 thì Y = 5
\(\Rightarrow\)X = 5 thì Y = 3
\(\Rightarrow\)X = 15 thì Y = 1
\(\Rightarrow\)X = -1 thì Y = -15
\(\Rightarrow\)X = -3 thì Y = -5
\(\Rightarrow\)X = -5 thì Y = -3
\(\Rightarrow\)X = -15 thì Y = -1
\(\frac{5}{6}=\frac{x-1}{x}\left(đk:x\ne0\right)\)
\(< =>5x=6\left(x-1\right)< =>5x=6x-6\)
\(< =>6x-5x=6< =>x=6\left(tmđk\right)\)
\(\frac{1}{2}=\frac{x+1}{3x}\left(đk:x\ne0\right)\)
\(< =>3x=2\left(x+1\right)< =>3x=2x+2\)
\(< =>3x-2x=2< =>x=2\left(tmđk\right)\)
\(\frac{3}{x+2}=\frac{5}{2x+1}\left(đk:x\ne-2;-\frac{1}{2}\right)\)
\(< =>3\left(2x+1\right)=5\left(x+2\right)< =>6x+3=5x+10\)
\(< =>6x-5x=10-3< =>x=7\left(tmđk\right)\)
\(\frac{5}{8x-2}=-\frac{4}{7-x}\left(đk:x\ne\frac{1}{4};7\right)\)
\(< =>\frac{5}{8x-2}=\frac{4}{x-7}< =>5\left(x-7\right)=4\left(8x-2\right)\)
\(< =>5x-35=32x-8< =>32x-5x=-35+8\)
\(< =>27x=-27< =>x=-1\)
\(\frac{4}{3}=\frac{2x-1}{3}< =>4.3=\left(2x-1\right).3\)
\(< =>12=6x-3< =>6x=12+3\)
\(< =>6x=15< =>x=\frac{15}{6}=\frac{5}{2}\)
\(\frac{2x-1}{3}=\frac{3x+1}{4}< =>4\left(2x-1\right)=3\left(3x+1\right)\)
\(< =>8x-4=9x+3< =>9x-8x=-4-3\)
\(< =>9x-8x=-7< =>x=-7\)
\(\frac{4}{x+2}=\frac{7}{3x+1}\left(đk:x\ne-2;-\frac{1}{3}\right)\)
\(< =>4\left(3x+1\right)=7\left(x+2\right)< =>12x+4=7x+14\)
\(< =>12x-7x=14-4< =>5x=10\)
\(< =>x=\frac{10}{5}=2\left(tmđk\right)\)
\(-\frac{3}{x+1}=\frac{4}{2-2x}\left(đk:x\ne-1;1\right)\)
\(< =>-3\left(2-2x\right)=4\left(x+1\right)< =>-6+6x=4x+4\)
\(< =>6x-4x=4+6< =>2x=10\)
\(< =>x=\frac{10}{2}=5\left(tmđk\right)\)
\(\frac{x+1}{3}=\frac{3}{x+1}\left(đk:x\ne-1\right)\)
\(< =>\left(x+1\right)\left(x+1\right)=3.3\)
\(< =>x^2+2x+1=9< =>x^2+2x+1-9=0\)
\(< =>x^2+2x-8=0< =>x^2-2x+4x-8=0\)
\(< =>x\left(x-2\right)+4\left(x-2\right)=0< =>\left(x+4\right)\left(x-2\right)=0\)
\(< =>\orbr{\begin{cases}x+4=0\\x-2=0\end{cases}< =>\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\left(tmđk\right)\)
có thể khẳng định ngay vì trong các tích a.d và b.c luôn có một tích dương và một tích âm
\(\dfrac{3}{x-5}=\dfrac{-4}{x-2}\left(x\notin\left\{5;2\right\}\right)\)
\(\Rightarrow3\left(x-2\right)=-4\left(x-5\right)\)
\(\Rightarrow3x-6=-4x+20\)
\(\Rightarrow3x+4x=20+6\)
\(\Rightarrow7x=26\)
\(\Rightarrow x=\dfrac{26}{7}\) (thỏa)
_________
\(\dfrac{3}{x}=\dfrac{y}{28}=\dfrac{-39}{91}\left(x\ne0\right)\)
\(\Rightarrow\dfrac{3}{x}=\dfrac{y}{28}=\dfrac{-3}{7}\)
+) \(\dfrac{3}{x}=-\dfrac{3}{7}\)
\(\Rightarrow x=\dfrac{3\cdot-7}{3}=-7\) (thỏa)
+) \(\dfrac{y}{28}=-\dfrac{3}{7}\)
\(\Rightarrow y=\dfrac{28\cdot-3}{7}=-12\)