K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=(3n+3n)+(3+3)+(5n+5n)+(1+2)

=(3n)2+6+(5n)2+3

=32n2+52n2+6+3

=(9+25)n2+9

=34n2+9

1 tháng 4 2020

Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !

27 tháng 10 2023

a) Sửa đề:

A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ chia hết cho 21 (n ∈ ℕ)

Ta có:

A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ

= 5ⁿ.(5² + 5 + 1)

= 5.31 ⋮ 31

Vậy A ⋮ 31

b) Sửa đề: B = 3ⁿ⁺² + 3ⁿ - 2ⁿ⁺²  - 2ⁿ

= 3ⁿ(3² + 1) - 2ⁿ.(2² + 1)

= 3.10 + 2ⁿ⁻¹.2.5

= 10.(3 + 2ⁿ⁻¹) ⋮ 10

Vậy B ⋮ 10

22 tháng 7 2015

a) Gọi ƯCLN của 3n+2 và 5n+3 là m

3n+2 chia hết cho m<=>15n+10 chia hết cho m

5n+3 chia hết cho m<=>15n+9 chia hết cho m

=>15n+10-(15n+9) chia hết cho m

1 chia hết cho m

m=1

=> ƯCLN của 3n+2 và 5n+3 là 1=>3n+2 và 5n+3 là 2 số nguyên tố cùng nhau

1 tháng 7 2018

Mình ra rồi nhé bạn,chờ xíu mình C/M cho. Đang bấm giữa chừng thì tự nhiên lỡ tay bấm nút thoát :|

1 tháng 7 2018

\(2n+1=a^2\)

Xét a chẵn : \(a^2=\left(2k\right)^2=4k^2\)

\(2n+1=4k^2\Rightarrow2n=4k^2-1\)mà \(4k^2-1\)là số lẻ nên không tồn tại 2n lẻ 

Xét a lẻ : \(a^2=\left(2k+1\right)^2=4k^2+4k+1\)

\(\Rightarrow2n=4k^2+4k=k\left(4k+4\right)=4\left(k^2+k\right)\)là số chẵn 

\(\Rightarrow\)n là số chẵn 

Vì n là số chẵn nên 3a+1 là số lẻ 

\(\Rightarrow3n+1=\left(2p+1\right)^2\)

\(\Rightarrow2n+1+3n+1+1=\left(2k+1\right)^2+\left(2p+1\right)^2+1=5n+3\)

Xét \(2n+1< 3n+1\Leftrightarrow\left(2k+1\right)^2< \left(2p+1\right)^2\)

Vì cả \(2n+1\)và \(3n+1\)đều là số lẻ nên....(Bí)

25 tháng 4 2017

\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)

mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}

câu 2 làm tương tự