Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\hept{\begin{cases}\left(3x-33\right)^{2014}\ge0\\\left|y-7\right|^{2015}\ge0\end{cases}}\)\(\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}\ge0\)
Kết hợp với giả thiết chỉ có \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}=0\) đúng
\(\Rightarrow\hept{\begin{cases}3x-33=0\\y-7=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=11\\y=7\end{cases}}\)
Vậy...................
\(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\le0\)
Ta có \(\left(3x-33\right)^{2014}\ge0\)với mọi gt \(x\in R\)
và \(\left(\left|y-7\right|\right)^{2015}\ge0\)với mọi gt \(x\in R\)
=> \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\ge0\)với mọi gt \(x\in R\)
Mà \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\le0\)
=> \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}=0\)
=> \(\hept{\begin{cases}\left(3x-33\right)^{2014}=0\\\left(\left|y-7\right|\right)^{2015}=0\end{cases}}\)=> \(\hept{\begin{cases}3x-33=0\\y-7=0\end{cases}}\)=> \(\hept{\begin{cases}3x=33\\y=7\end{cases}}\)=> \(\hept{\begin{cases}x=11\\y=7\end{cases}}\)
Ta có:\(\left(3x-33\right)^{2014}\ge0,\left|y-7\right|^{2015}\ge0\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}\ge0\)
Mà VP\(\le0\)
\(\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}=0\)
\(\Leftrightarrow\left(3x-33\right)^{2014}=0\Leftrightarrow3x-33=0\Leftrightarrow3x=33\Leftrightarrow x=11\)
\(\Leftrightarrow\left|y-7\right|^{2015}=0\Leftrightarrow\left|y-7\right|=0\Leftrightarrow y-7=0\Leftrightarrow y=7\)
Vậy x=11;y=7
=>x-2014=0 và y-2015=0
=>x=2014 và y=2015
=>x+y=4029
vì ( x - 2014 )2014 \(\ge\)0 \(\forall\)x
( y - 2015 )2014 \(\ge\)0 \(\forall\)y
\(\Rightarrow\)( x - 2014 )2014 + ( y - 2015 )2014 \(\ge\)0 \(\forall\)x,y
Mà ( x - 2014 )2014 + ( y - 2015 )2014 = 0
\(\Rightarrow\)\(\hept{\begin{cases}\left(x-2014\right)^{2014}=0\\\left(y-2015\right)^{2014}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2014\\y=2015\end{cases}}\)
Vậy ( x ; y ) = ( 2014 ; 2015 )
Vì (x-2014)2014 \(\ge\) 0
(y-2015)2014 \(\ge\)0
=> (x-2014)2014 + (y-2015)2014 \(\ge\) 0
Mà (x-2014)2014 + (y-2015)2014 = 0
=> \(\hept{\begin{cases}\left(x-2014\right)^{2014}=0\\\left(y-2015\right)^{2015}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2014=0\\y-2015=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}}}\)
vì ( y - 3 )2014 \(\ge\)0 \(\forall\)y
| 2x + 1 |2015 \(\ge\)0 \(\forall\)x
\(\Rightarrow\)( y - 3 )2014 + | 2x + 1 |2015 \(\ge\)0 \(\forall\)x,y
Mà ( y - 3 )2014 + | 2x + 1 |2015 = 0
\(\Rightarrow\hept{\begin{cases}\left(y-3\right)^{2014}=0\\\left|2x+1\right|^{2015}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y-3=0\\2x+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=3\\x=\frac{-1}{2}\end{cases}}\)
\(\left(3x-33\right)^{2014}>=0\forall x\)
\(\left|y-7\right|^{2015}>=0\forall y\)
Do đó: \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}>=0\forall x,y\)
mà \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}< =0\)
nên 3x-33=0 và y-7=0
=>x=11 hoặc y=7