Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABD và tam giác ACDcó AB+BD>AD vàAC+CD>AD(BĐT tam giác ABD và ACD)
Cộng 2 vế lại với nhau ta được:
AB+AC+BD+CD>2AD
=>AB+AC+BC>2AD
Mà AB+AC+BC là chu vi của tam giác ABC
=>1/2(AB+AC+BC)>AD
Vậy nửa chu vi của tam giác ABC>AD
10^12 -1 = 99....9999(11 cs 9)
ta có : tổng các cs của 99999...999(11 cs9) là : 9+9+9...+9=99
vì 99 chia hết cho 3, 9 nên 10^12-1 chia hết cho 3,9
\(2^{24}=(2^3)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
vì \(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
\(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
\(8< 9\)
\(\Rightarrow8^9< 9^9\)
\(\Rightarrow2^{24}< 3^{16}\)
Ta có: lx-1l + l4-xl = 3 <=> lx-1l + lx-4l = 3
TH1: Nếu x < 1, ta có: TH2: Nếu 1 < x < 4, ta có: TH3: Nếu x > 4, ta có: 1 - x + 4 - x = 3 x - 1 + 4 - x = 3 x - 1 + x - 4 = 3 <=>5 - 2x = 3 <=> 3 =3 (TM) <=> 2x - 5 = 3
<=> 2x = 5 - 3 = 2 <=> x = 1;2;3;4 <=> 2x = 3 + 5 = 8 <=> x = 1 (TM) < => x = 4(TM) Vậy x = 1;2;3;4.
\(\dfrac{x}{9}< \dfrac{4}{7}< \dfrac{x+1}{9}\)
=>\(\dfrac{7x}{63}< \dfrac{36}{63}< \dfrac{7x+7}{63}\)
\(\Rightarrow7x< 36< 7x+7\)
\(\Rightarrow x< \dfrac{36}{7}< x+1\)
\(\Rightarrow x< 5\dfrac{1}{7}< x+1\)
\(\Rightarrow x=5\)
\(\dfrac{x}{9}\) < \(\dfrac{4}{7}\) < \(x\) + \(\dfrac{1}{9}\)
\(\dfrac{7x}{63}\) < \(\dfrac{36}{63}\) < \(\dfrac{63x}{63}\) + \(\dfrac{7}{63}\)
7\(x\) < 36 < 63\(x\) + 7
⇒\(\left\{{}\begin{matrix}7x< 36\\63x+7>36\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>36-7\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>29\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\x>\dfrac{29}{63}\end{matrix}\right.\)
\(\dfrac{29}{63}\)< \(x\) < \(\dfrac{36}{7}\) vì \(x\in\) Z nên \(x\in\) { 1; 2; 3; 4; 5}
⇒ \(\dfrac{x}{9}\) = \(\dfrac{1}{9}\); \(\dfrac{2}{9}\); \(\dfrac{3}{9}\); \(\dfrac{4}{9}\);\(\dfrac{5}{9}\)
Đây là câu hỏi lớp 6
2/34 .92 =16/81 . 81
=16
mong bạn k cho
= 16
HT#