Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời dùm minh với, mình đang vội lắm
Ai nhanh nhất mình k cho
Câu 1 :
Xét \(\Delta AHC\) có :
\(\widehat{H}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta AHC\) vuông tại H
Ta có : \(AC^2=AH^2+HC^2\) (Định lí PYTAGO)
=> \(AC^2=12^2+18^2=325\)
=> \(AC=\sqrt{325}\)
Xét \(\Delta ABH\) có :
\(\widehat{AHB}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta ABH\) vuông tại H
Ta có : \(AB^2=AH^2+BH^2=12^2+9^2=225\)
=> \(AB=\sqrt{225}=15\left(cm\right)\)
Câu 2 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=24^2+18^2=900\) (Định lí PITAGO)
=> \(AC=\sqrt{900}=30\left(cm\right)\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=24^2+32^2=1600\) (định lí PITAGO)
=> \(AB=\sqrt{1600}=40\left(cm\right)\)
Câu 3 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=2^2+4^2=20\) (Định lí PITAGO)
=> \(AC=\sqrt{20}\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=2^2+1^2=5\)(Định lí PITAGO)
=> \(AB=\sqrt{5}\)
Câu 4 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=\left(\sqrt{3}\right)^2+4^2=19\)(Định lí PITAGO)
=> \(AC=\sqrt{19}\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=\left(\sqrt{3}\right)^2+1^2=4\)(Định lí PITAGO)
=> \(AB=\sqrt{4}=2\)
Câu 5 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=1^2+1^2=1\)(Định lí PITAGO)
=> \(AC=\sqrt{1}=1\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=1^2+1^2=1\) (Định lí PITAGO)
=> \(AB=\sqrt{1}=1\)
CÁC CÂU SAU LÀM TƯƠNG TỰ NHÉ !
Tam giác ABC vuông tại A nên áp dụng định lí Pytago ta có:
AB2 + AC2 = BC2
<=> 122+92 = BC2
<=> BC2 =225
Mà BC >0 => BC =15 cm
Ta có : SABC = 1/2.AB.AC=1/2.AH.BC
<=> AB.AC=AH.BC
<=> 12.9=AH.15
<=> AH=7,2 ( cm)
Tam giác ABH vuông tại H ( AH vuông góc BC ) nên áp dụng định lí Pytago ta có
AB2=BH2+AH2
<=> 122=BH2+7,22
<=>BH2= 92,16
Mà BH >0 => BH=9,6(cm)
Ta có BH+CH=BC ( H nằm giữa B và C)
<=> 9,6 +CH = 15
<=> CH = 5,4 ( cm)
Vậy AH= 7,2 ( cm)
BH=9,6 (cm)
CH= 5,4 (cm)
Tk mình nhé!!
~~ Học tốt~~
cho tam giác ABC vuông tại A , vẽ AH vuông góc với BC tại H biết AB= 12cm , AC = 9cm . Tính AH,BH,CH
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15cm
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20cm
Vậy: AB=15cm; AC=20cm
Ta có: BH+CH=BC(H nằm giữa B và C)
hay BC=9+16=25cm
Ta có: \(AB^2+AC^2=15^2+20^2=625\)
\(BC^2=25^2=625\)
Do đó: \(BC^2=AB^2+AC^2\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Đề sai nha bạn!Tam giác ABC cân tại A tại sao AB=12cm,AC=9cm?
a: BC=25cm
\(AB=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Hai câu còn lại bạn ghi lại đề phần BH đi bạn