Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vao Chứng minh rằng 2^9+2^99 chia hết cho 100 toán dành cho ...
câu dễ trước nhé:
B = 1 + 2+ 3 +4 +5 +......+ 100
B có số hạng là:
(100 - 1 ) : 1 + 1 = 100 số hạng
B có tổng là:
(100 + 1 ) x 100 : 2 = 5050
A = 13 + 23 + 33 +.......+1003 A= 1 + ( 2 -1 ) x2 x ( 2 + 1) + 2 +( 3 - 1) x 3 x( 3 + 1 ) +3 +.....+( 100-1) x 100 x ( 100 +1 ) + 100 ( vì 13 =1, 2 3 = ( 2-1 ) x 2 x ( 2 + 1) +2 ,....)
A =1 + 1x 2 x3 + 2 + 2 x 3 x 4 + 3 +........+ 99 x 100 x 101 + 100
A = ( 1 x 2 x3 + 2 x3 x4 + x3x4 x5 +.....+ 99 x100 x101) - ( 1 +2 +3+ 4 +....+ 100)
đặt M = 1 x 2 x3 + 2 x3 x4 + ......+ 99 x100x101
M x 4 = 1 x2 x3 x4 + 2 x3 x4 x4 + ......+ 99 x100 x101 x4
M x 4 = 1 x 2 x3 x4 + 2 x 3 x4 x( 5 - 1) +........+ 99 x 100 x 101 x ( 102 - 98)
M x 4 = 1 x 2 x3 x4 + 2 x 3 x4 x 5 - 1 x 2 x3 x4 +.....+ 99 x 100 101 x102 - 98 x99 x100 x101
M x 4 = 99 x100 x101 x102
M x 4 =101989800
M = 101989800: 4
M = 25497450
đặt N = 1 + 2 +3 + 4 + 5 +.....+ 100
đáp án là câu B phía trên = 5050
A = M-N = 25497450 - 5050=25487350
ta có A = 13 +23+....+1003
B = 1 + 2 + 3 + ...+ 100
vì mỗi số hạng của A đều là lập phương của 1 số hạng ở B
theo tính chất chia hết của tổng thì số hạng nào cũng chia hết cho 1 số thì tổng cũng chia hết cho só đó
vậy A chia hết cho B
\(1,\left(2n-3\right)^2-9=\left(2n-3-3\right)\left(2n-3+3\right)=\left(2n-6\right)2n=4n\left(n-3\right)⋮4\)
\(2,=a^3\left(a-2\right)-a\left(a-2\right)=\left(a-2\right)\left(a^3-a\right)=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\)
Vì đây là tích 4 số nguyên lt nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
\(1;\)
\(a,2^{12}+1=\left(2^4\right)^3+1^3=\left(2^4+1\right)\left(2^8-2^4+1\right)=17.\left(2^8-2^4+1\right)⋮17\)
\(b,3^9-8=\left(3^3\right)^3-2^3=\left(27-2\right)\left(3^6+3^3.2+4\right)⋮25\)
\(c,173^n-73^n⋮\left(173-73\right)=100\)
29 + 299 = 29+ (211)9 = (2 + 211)(28 - 27.211 + ... - 2.277 + 288)
Thừa số thứ nhất 2 + 211 = 2050
Thừa số thứ hai chứa toàn các số chẵn, tức là có dạng 2A.
Do đó: 29+ 299 = 2050.2A = 4100A. Vậy số A = 29 + 299 chia hết cho 100.