K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
10 tháng 11 2023

Hình như bạn chép sai đề, mình sửa nhé :

\(S=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{26.31}\\ =>\dfrac{S}{5}=\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{26.31}\\ =>\dfrac{S}{5}=\dfrac{6-1}{1.6}+\dfrac{11-6}{6.11}+\dfrac{16-11}{11.16}+...+\dfrac{31-26}{26.31}\\ =>\dfrac{S}{5}=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{26}-\dfrac{1}{31}=1-\dfrac{1}{31}=\dfrac{30}{31}\\ =>S=\dfrac{30}{31}.5=\dfrac{150}{31}\)

11 tháng 12 2021

\(\Leftrightarrow2x\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

Đặt \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100};B=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

\(\Leftrightarrow A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ \Leftrightarrow A=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ \Leftrightarrow A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ \Leftrightarrow A=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}-1-\dfrac{1}{2}-\dfrac{1}{3}-...-\dfrac{1}{50}\\ \Leftrightarrow A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)

\(\Leftrightarrow2x.A=B\Leftrightarrow2x.B-B=0\\ \Leftrightarrow B\left(2x-1\right)=0\\ \Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

14 tháng 7 2019

\(C=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Leftrightarrow C=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow C=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(\Leftrightarrow C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(\Leftrightarrow C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(\Leftrightarrow C=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Vậy D /C = 2019 (là số nguyên)

26 tháng 9 2017

\(P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}}\\ \Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}}\\ \)

\(\Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ \Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\)

\(\Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)}\\ \Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\\ \Rightarrow P=1\)