Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
2; 2; 5; 7; 10; 10; 13; 15; 19
+) Vì cỡ mẫu là \(n = 9\), là số lẻ, nên giá trị tứ phân vị thứ hai là \({Q_2} = 10\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7.
Do đó \({Q_1} = \frac{1}{2}(2 + 5) = 3,5\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 13; 15; 19.
Do đó \({Q_3} = \frac{1}{2}(13 + 15) = 14\)
b) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
1; 2; 5; 5; 9; 10; 10; 15; 15; 19
+) Vì cỡ mẫu là \(n = 10\), là số chẵn, nên giá trị tứ phân vị thứ hai là \({Q_2} = \frac{1}{2}(9 + 10) = 9,5\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9.
Do đó \({Q_1} = 5\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 10; 15; 15; 19.
Do đó \({Q_3} = 15\)
\(\Leftrightarrow4^{3x}+4^x\ge\left(2^{3x}+12.2^x+6.2^{2x}+8\right)+2^x+2\)
\(\Leftrightarrow\left(4^x\right)^3+4^x\ge\left(2^x+2\right)^3+\left(2^x+2\right)\)
\(\Leftrightarrow f\left(4^x\right)\ge f\left(2^x+2\right)\)
Với \(f\left(t\right)=t^3+t,t>0;f'\left(t\right)=3t^2+1>0\) với mọi t
Do đó hàm số \(f\left(t\right)\) đồng biến trên R
Suy ra \(4^x\ge2^x+2\Leftrightarrow\left(2^x\right)^2-2^x-2\ge0\Leftrightarrow\left(2^x+1\right)\left(2^x-1\right)\ge0\)
\(\Leftrightarrow2^x-1\ge0\Leftrightarrow x\ge0\)
Vậy tập nghiệm bất phương trình là S = [0;+\(\infty\))
Chọn A.
Lập bảng tần số- tần suất:
Phương sai của dãy số liệu trên là:
\(=\dfrac{5\cdot2^{30}-3^{20}\cdot2^{29}}{5\cdot2^{10}-7\cdot2^{30}\cdot3^3}\)
\(=\dfrac{2^{29}\left(5\cdot2-3^{20}\right)}{2^{10}\left(5\cdot1-7\cdot2^{20}\cdot3^3\right)}=\dfrac{2^{19}\cdot\left(10-3^{20}\right)}{5-189\cdot2^{20}}\)
......