K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

a) Th1: x= 2,5 và y = -3/4

\(A\left(2,5;-\frac{3}{4}\right)=2\cdot2,5+2\cdot2,5\cdot\left(-\frac{3}{4}\right)-\left(-\frac{3}{4}\right)=5-\frac{15}{4}+\frac{3}{4}=\frac{19}{2}\)

Th2: x= -2,5 và y= -3/4

\(A\left(-2,5;-\frac{3}{4}\right)=2\cdot\left(-2,5\right)+2\cdot\left(-2,5\right)\cdot\left(-\frac{3}{4}\right)-\left(-\frac{3}{4}\right)=-5+\frac{15}{4}+\frac{3}{4}=-\frac{1}{2}\)

Vậy ...

b) Chia 2 trường hợp, làm tương tự.

18 tháng 7 2018

mấy bài này thì tự tính đi bạn, phụ thuộc quá

18 tháng 7 2018

cool queen mình chỉ bí câu b thôi

28 tháng 9 2020

A = 3x2 - 2x + 1

| x | = 1/2 => x = ±1/2

Với x = 1/2 => A = 3.(1/2)2 - 2.1/2 + 1

                           = 3.1/4 - 1 + 1

                           = 3/4

Với x = -1/2 => A = 3(-1/2)2 - 2.(-1/2) + 1

                            = 3.1/4 + 1 + 1

                            = 3/4 + 2 = 11/4

B = 2x + 2xy - y

| x | = 2, 5 => x = ±5/2

Với x = 5/2 ; y = -3/4 

=> B = 2.5/2 + 2.5/2.(-3/4) - (-3/4)

= 5 - 15/4 + 3/4

= 2

Với x = -5/2 ; y = -3/4

=> B = 2.(-5/2) + 2.(-5/2).(-3/4) - (-3/4)

= -5 + 15/4 + 3/4

= -1/2

28 tháng 9 2020

a) \(\left|x\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\)

+) Thay \(x=\frac{1}{2}\)vào biểu thức A ta có :

\(A=3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1=\frac{3}{4}-1+1=\frac{3}{4}\)

+) Thay \(x=\frac{-1}{2}\)vào biểu thức A ta có  :

\(A=3.\left(\frac{-1}{2}\right)^2-2.\left(\frac{-1}{2}\right)+1=\frac{3}{4}+1+1=\frac{11}{4}\)

vậy .............

b) Ta có : \(\left|x\right|=2,5\Leftrightarrow\orbr{\begin{cases}x=2,5\\x=-2,5\end{cases}}\)

+) Thay x = 2,5 vào biểu thức B , ta có :

\(B=2.2,5+2.2,5.\frac{-3}{4}-\frac{-3}{4}=2\)

+) Thay x = -2,5 vào biểu thức B , ta có :

\(B=2.\left(-2,5\right)+2.\left(-2,5\right).\frac{-3}{4}-\frac{-3}{4}=-\frac{1}{2}\)

Vậy ...............

8 tháng 7 2015

    a-8\b-5 - 4a-b\3a+3

= (a-3)-5 \ b-5 -  3a+(a-b) \ 3a+3

= b-5 \ b-5  - 3a+3\3a+3

= 1-1

=0

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

18 tháng 1 2019

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

18 tháng 1 2019

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)