Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^x+5^{x+1}+5^{x+2}+5^{x+3}=1+2+3+...+87+88-4^2\)
=>\(5^x+5^x\cdot5+5^x\cdot25+5^x\cdot125=88\cdot\dfrac{\left(88+1\right)}{2}-16\)
=>\(156\cdot5^x=44\cdot89-16=3900\)
=>\(5^x=\dfrac{3900}{156}=25\)
=>x=2
Lời giải:
$5^x+5^{x+1}+5^{x+2}+5^{x+3}=1+2+3+...+87+88-4^2$
$5^x(1+5+5^2+5^3)=88.89:2-16$
$5^x.156=3900$
$5^x=3900:156=25=5^2$
$\Rightarrow x=2$
1/2.2x+4.2x=9.2x
2x.(1/2+4)=9.2x
2x.9/2=9.2x
2x:2x=9:9/2
x=2
vậy x=2
5x+5x+1+5x+2=31
5x + 5x + 5x = 31 - 2 - 1
15x = 28
x= 28/15
a, 42x - 6 = 1
=> 42 x = 7
=> x = 6
b, 5x + 5x + 1 +5x + 2 = 775
=> 15 x + 3 = 775
=> 15 x = 772
=> x = 772/ 15
2⁵ˣ⁺¹ - 2⁵ˣ = 32
2⁵ˣ.(2 - 1) = 2⁵
2⁵ˣ = 2⁵
5x = 5
x = 5 : 5
x = 1
\(2^{5x+1}-2^{5x}=32\)
\(\Rightarrow2^{5x+1}-2^{5x}=2^5\)
\(\Rightarrow2^{5x}\cdot2-2^{5x}\cdot1=2^5\)
\(\Rightarrow2^{5x}\cdot\left(2-1\right)=2^5\)
\(\Rightarrow2^{5x}\cdot1=2^5\)
\(\Rightarrow2^{5x}=2^5\)
\(\Rightarrow5x=5\)
\(\Rightarrow x=\dfrac{5}{5}\)
\(\Rightarrow x=1\)
\(\left(1-3x\right)+\left(x-3\right)=\left(5x-1\right)-\left(5x+3\right)\)
\(\Rightarrow1-3x+x-3=5x-1-5x-3\)
\(\Rightarrow\left(1-3\right)-\left(3x-x\right)=\left(5x-5x\right)-\left(1+3\right)\)
\(\Rightarrow-2-2x=-4\)
\(\Rightarrow2x=-2+4\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
\(5^{x+1}-5^x=2.2^x+8.2^x\\ \Leftrightarrow5^x.5-5^x=2.2^x+8.2^x\\ \Leftrightarrow5^x\left(5-1\right)=2^x\left(2+8\right)\\ \Leftrightarrow5^x.4=2^x.10\\ \Leftrightarrow5^x:2^x=\dfrac{5}{2}\\ \Leftrightarrow\left(\dfrac{5}{2}\right)^x=\dfrac{5}{2}\\ \Rightarrow x=1\)