Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-2\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(=\left(b-c\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
nguồn câu hỏi tương tự
Trang 136 trong nâng cao phát triển có viết rồi mình cóp nó vô để mọi người dễ đọc nhé !
\(a,\) Đặt \(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
Với \(a=-b\) ta được \(A=0\)
Do vai trò bình đẳng của a,b,c và A bậc 3 nên nhân tử còn lại là hằng số k
Do đó \(A=k\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Cho \(a=b=c=1\Leftrightarrow3^3-1-1-1=8k\Leftrightarrow k=3\)
Do đó \(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(b,\) Đặt \(B=a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
Với \(a=b\Leftrightarrow B=0\)
Do vai trò bình đẳng của a,b,c và B bậc 4 nên \(B=\left(a-b\right)\left(b-c\right)\left(c-a\right)Q\) trong đó Q bậc nhất
Do đó \(Q=\left(a+b+c\right)R\) với R là hằng số
\(\Leftrightarrow B=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow-12=12R\Leftrightarrow R=-1\)
Do đó \(B=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
\(c,\) Đặt \(C=\left(a+b+c\right)^5-a^5-b^5-c^5\)
Cho \(a=-b\Leftrightarrow C=0\)
Do vai trò bình đẳng của a,b,c và C bậc 5 nên \(C=\left(a+b\right)\left(b+c\right)\left(c+a\right)P\) trong đó P bậc 2
Do đó \(P=\left(a^2+b^2+c^2+ab+bc+ca\right)R\) với R là hằng số
\(\Leftrightarrow C=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow7500=1500R\Leftrightarrow R=5\)
Do đó \(C=5\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)
\(d,\) Đặt \(D=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
Với \(a=b+c\Leftrightarrow D=0\)
Do vai trò bình đẳng của a,b,c và D bậc 4 nên \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)R\) với R bậc nhất
Do đó \(R=\left(a+b+c\right)Q\) với Q là hằng số
\(\Leftrightarrow D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)Q\)
Cho \(a=b=c=1\Leftrightarrow Q=1\)
Do đó \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)\)
a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)
a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+c^2a-c^2b+b^2\left(c-a\right)\)
\(=\left(a^2b-c^2b\right)-\left(a^2c-c^2a\right)-b^2\left(a-c\right)\)
\(=b\left(a^2-c^2\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)
\(=b\left(a-c\right)\left(a+c\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)
\(=\left(a-c\right)\left[b\left(a+c\right)-ac-b^2\right]\)
\(=\left(a-c\right)\left(ab+bc-ac-b^2\right)\)
\(=\left(a-c\right)\left[\left(ab-b^2\right)+\left(bc-ac\right)\right]\)
\(=\left(a-c\right)\left[b\left(a-b\right)+c\left(b-a\right)\right]\)
\(=\left(a-c\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)
b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
\(=a^3b-a^3c+c^3a-c^3b+b^3\left(c-a\right)\)
\(=\left(a^3b-c^3b\right)-\left(a^3c-c^3a\right)-b^3\left(a-c\right)\)
\(=b\left(a^3-c^3\right)-ac\left(a^2-c^2\right)-b^3\left(a-c\right)\)
\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-ac\left(a-c\right)\left(a+c\right)-b^3\left(a-c\right)\)
\(=\left(a-c\right)\left[b\left(a^2+ac+c^2\right)-ac\left(a+c\right)-b^3\right]\)
\(=\left(a-c\right)\left(ba^2+abc+bc^2-a^2c-ac^2-b^3\right)\)
\(=\left(a-c\right)\left[\left(ba^2-a^2c\right)+\left(abc-ac^2\right)+\left(bc^2-b^3\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)+b\left(c^2-b^2\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b^2-c^2\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b-c\right)\left(b+c\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left[a^2+ac-b\left(b+c\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left(a^2+ac-b^2-bc\right)\)
\(=\left(a-c\right)\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)