Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`\(2^x -15= 2^4+1\)
`-> 2^x-15=17`
`-> 2^x=17+15`
`-> 2^x=32`
`-> 2^x=2^5`
`-> x=5`
`b,` Có phải đề là \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\) ?
`=>`\(\dfrac{x+1}{65}+1+\dfrac{x+2}{64}+1=\dfrac{x+3}{63}+1+\dfrac{x+4}{62}+1\)
`=>`\(\dfrac{x+1+65}{65}+\dfrac{x+2+64}{64}-\dfrac{x+3+63}{63}-\dfrac{x+4+62}{62}=0\)
`=>`\(\dfrac{x+66}{65}+\dfrac{x+66}{64}-\dfrac{x+66}{63}-\dfrac{x+66}{62}=0\)
`=>`\(\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{64}-\dfrac{1}{63}-\dfrac{1}{62}\right)=0\)
Mà `1/65+1/64-1/63-1/62 \ne 0`
`-> x+66=0`
`-> x=-66`
a: =>2^x=2^4+16=32
=>x=5
b: Sửa đề: \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\)
=>\(\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+2}{64}+1\right)=\left(\dfrac{x+3}{63}+1\right)+\left(\dfrac{x+4}{62}+1\right)\)
=>x+66=0
=>x=-66
(x-99) (1/30 + 1/32 + 1/34 - 1/36 - 1/38) = 0
SUy ra x - 99 = 0
VẬy x =99
\(\)Bạn viết thiếu 1 vế đúng không?
\(\dfrac{x-69}{30}+\dfrac{x-67}{32}+\dfrac{x-65}{34}=\dfrac{x-63}{36}+\dfrac{x-61}{38}+\dfrac{x-59}{40}\)\(\Rightarrow\left(\dfrac{x-69}{30}-1\right)+\left(\dfrac{x-67}{32}-1\right)+\left(\dfrac{x-65}{34}-1\right)=\left(\dfrac{x-63}{36}-1\right)+\left(\dfrac{x-61}{38}-1\right)+\left(\dfrac{x-59}{40}-1\right)\)
\(\Rightarrow\dfrac{x-99}{30}+\dfrac{x-99}{32}+\dfrac{x-99}{34}=\dfrac{x-99}{36}+\dfrac{x-99}{38}+\dfrac{x-99}{40}\)
\(\Rightarrow\dfrac{x-99}{30}+\dfrac{x-99}{32}+\dfrac{x-99}{34}-\dfrac{x-99}{36}-\dfrac{x-99}{38}-\dfrac{x-99}{40}=0\)\(\Rightarrow\left(x-99\right)\left(\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{34}-\dfrac{1}{36}-\dfrac{1}{38}-\dfrac{1}{40}\right)=0\)
Vì \(\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{34}-\dfrac{1}{36}-\dfrac{1}{38}-\dfrac{1}{40}\ne0\)
Nên:
\(x-99=0\Rightarrow x=99\)
Đặt \(A=6^3+6^5+6^7+...+6^{99}\)
Ta có: \(A=6^3+6^5+6^7+...+6^{99}\)
\(\Leftrightarrow36\cdot A=6^5+6^7+6^9+...+6^{101}\)
\(\Leftrightarrow A-36A=6^3+6^5+6^7+...+6^{99}-6^5-6^7-6^9-...-6^{101}\)
\(\Leftrightarrow-35\cdot A=6^3-6^{101}\)
\(\Leftrightarrow A=\dfrac{6^{101}-6^3}{35}\)