Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(7^0+7^1+7^2+...+7^{2011}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{2010}+7^{2011}\right)\)
\(=8+8.49+...+8.7^{2010}\)
\(=8\left(1+49+..+7^{2010}\right)⋮8\)
Vậy \(7^0+7^1+7^2+...+7^{2010}+7^{2011}⋮8\)
= 7 mũ ko . 1 + 7 mũ 0 .7 ( tách 7 mũ 1 ) +.........+ 7 mũ 2010 .1 + 7 mũ 2010 . 7
= 7 mũ ko . ( 1+7 ) + 7 mũ 2 . ( 1 + 7 ) + ..... + 7 mũ 2010 . ( 1+ 7 )
= 7 mũ ko . 8 + 7 mũ 2 . 8 + .... + 7 mũ 2010 . 8
= ( 7 mũ 0 + 7 mũ 2 + 7 mũ 4 + .... + 7 mũ 2008 + 7 mũ 2010 ) . 8 .... chia hết cho 8
=> ( 7 mũ 0 + 7 mũ 1 + 7 mũ 2 + ..... 7 mũ 2010 + 7 mũ 2011 ) chia hết cho 8
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
70 + 71 + 72 + 73 + ... + 72008 + 72009
= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009
=8 + 8 . 73 + ... + 8 . 72009
= 8 . (1 + 73 + ... + 72009)
Vậy tổng trên chia hết cho 8
Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 )
(=) ( 1 + 7 + 72 + 7 3 + ...... + 72008 + 72009 )
(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )
(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )
(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
vghghghgh