K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 10 2020

Gọi M là 1 điểm bất kì thuộc d \(\Rightarrow2x_M-y_M+1=0\) (1)

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_M=x_{M'}-1\\y_M=y_{M'}+2\end{matrix}\right.\) thế vào (1)

\(\Rightarrow2\left(x_{M'}-1\right)-\left(y_{M'}+2\right)+1=0\)

\(\Leftrightarrow2x_{M'}-y_{M'}-3=0\)

Vậy pt d' là: \(2x-y-3=0\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Lời giải:

Xét $A(x,y)\in d$ và $M'(x',y')=T_{\overrightarrow{v}}$. Ta có:

\(\left\{\begin{matrix} x'-x=-2\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+2\\ y=y'-5\end{matrix}\right.\)

Thay vào $(d)$:

$x'+2+y'-5+3=0$

$\Leftrightarrow x'+y'=0$ (đây là ptđt $d'$ cần tìm)

NV
22 tháng 7 2020

4.

Để phép tịnh tiến theo \(\overrightarrow{v}\) biến d thành chính nó thì \(\overrightarrow{v}\) phải là 1 vecto chỉ phương của d

Khi đó \(\overrightarrow{v}=k\left(1;2\right)\) với k là số thực

5.

Đường tròn tâm \(I\left(2;1\right)\) bán kính \(R=4\)

Phép tịnh tiến theo \(\overrightarrow{v}\) biến đường tròn thành đường tròn tâm I' bán kính R=4

\(I'=T_{\overrightarrow{v}}\left(I\right)\Rightarrow\left\{{}\begin{matrix}x_{I'}=2+1=3\\y_{I'}=3+1=4\end{matrix}\right.\) \(\Rightarrow I'\left(3;4\right)\)

Phương trình đường tròn: \(\left(x-3\right)^2+\left(y-4\right)^2=16\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

15.

Gọi $\overrightarrow{v}=(a,b)$

Theo bài ra ta có:

$T_{\overrightarrow{v}}(B)=A$

$\Leftrightarrow \overrightarrow{BA}=\overrightarrow{v}$

$\Leftrightarrow (-4,4)=\overrightarrow{v}$

AH
Akai Haruma
Giáo viên
8 tháng 10 2020

4.

Bạn nhớ tính chất sau: phép tịnh tiến theo vecto $\overrightarrow{v}$ biến đường thẳng thành chính nó khi và chỉ khi $\overrightarrow{v}$ là vecto chỉ phương của đường thẳng $d$.

Dễ thấy $\overrightarrow{u_d}=(1,2)$ nên $\overrightarrow{v}=(1,2)$. Đáp án C.

Giải theo cách thuần thông thường:

Gọi vecto cần tìm là $\overrightarrow{v}=(a,b)$

Gọi $M(x,2x+1)$ là điểm thuộc đường thẳng $d$

$M'(x',y')=T_{\overrightarrow{v}}(M)\in (d)$

\(\Rightarrow \left\{\begin{matrix} x'=x+a; y'=2x+1+b\\ 2x'-y'+1=0\end{matrix}\right.\)

\(\Rightarrow 2(x+a)-(2x+1+b)+1=0\)

\(\Leftrightarrow 2a=b\)

Vậy $\overrightarrow{v}=(1,2)$

24 tháng 2 2019

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

c) Đường thẳng d có vecto pháp tuyến là n(1;-2) nên 1 vecto chỉ phương của d là(2; 1)

=> Vecto v không cùng phương với vecto chỉ phương của đường thẳng d

=> Qua phép tịnh tiến v biến đường thẳng d thành đường thẳng d’ song song với d.

Nên đường thẳng d’ có dạng : x- 2y + m= 0

Lại có B(-1; 1) d nên B’(-2;3) d’

Thay tọa độ điểm B’ vào phương trình d’ ta được:

-2 -2.3 +m =0 ⇔ m= 8

Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0

12 tháng 5 2019

Đáp án B

22 tháng 10 2018

Gọi M′(x′;y′) ∈ d′ là ảnh của M(x,y) ∈ d qua phép tịnh tiến theo vecto  v → ( 2 ; 3 )

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do M(x,y) ∈ d nên

3x − 5y + 3 = 0

⇒ 3(x′−2) − 5(y′−3) + 3 = 0

⇔ 3x′ − 5y′ + 12 = 0 (d′)

Vậy M′(x′;y′) ∈ d′: 3x′ − 5y′ + 12 = 0