Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
1: \(\Leftrightarrow\dfrac{3x-1}{x+2}=4\)
=>4x+8=3x-1
=>x=-9
2: \(\Leftrightarrow\dfrac{5x-7}{2x-1}=4\)
=>8x-4=5x-7
=>3x=-3
=>x=-1
3: ĐKXD: x>=0
\(PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
=>\(x+\sqrt{x}-6=x-1\)
=>căn x=-1+6=5
=>x=25
4: ĐKXĐ: x>=0
PT =>\(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
=>x-2*căn x-3=x-4
=>-2căn x-3=-4
=>2căn x+3=4
=>2căn x=1
=>căn x=1/2
=>x=1/4
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ge-1\)
\(7+12\sqrt{x+1}=x+4\sqrt{x^2+3x+2}\)
\(\Leftrightarrow4\sqrt{\left(x+1\right)\left(x+2\right)}-12\sqrt{x+1}+x-7=0\)
\(\Leftrightarrow4\sqrt{x+1}\left(\sqrt{x+2}-3\right)+x-7=0\)
\(\Leftrightarrow4\sqrt{x+1}\left(\dfrac{x-7}{\sqrt{x+2}+3}\right)+x-7=0\)
\(\Leftrightarrow\left(x-7\right)\left(\dfrac{4\sqrt{x+1}}{\sqrt{x+2}+3}+1\right)=0\)
\(\Leftrightarrow x-7=0\) (do \(\dfrac{4\sqrt{x+1}}{\sqrt{x+2}+3}+1>0;\forall x\ge-1\))
\(\Rightarrow x=7\)
b.
ĐKXĐ: \(x\ne-\dfrac{1}{3}\)
\(\Rightarrow3x^2+3x+2=\left(3x+1\right)\sqrt{x^2+x+2}\)
\(\Leftrightarrow x^2+x+2-\left(3x+1\right)\sqrt{x^2+x+2}+2x^2+2x=0\)
Đặt \(\sqrt{x^2+x+2}=t\)
\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)
\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1+x-1}{2}=2x\\t=\dfrac{3x+1-\left(x-1\right)}{2}=x+1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2x\left(x\ge0\right)\\\sqrt{x^2+x+2}=x+1\left(x\ge-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4x^2\left(x\ge0\right)\\x^2+x+2=x^2+2x+1\left(x\ge-1\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\\\end{matrix}\right.\)