Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7xy^5\left(x-1\right)-3x^2y^4\left(1-x\right)+5xy^3\left(x-1\right)\)
\(=7xy^5\left(x-1\right)+3x^2y^4\left(x-1\right)+6xy^3\left(x-1\right)\)
\(=\left(x-1\right)\left(7xy^5+3x^2y^4-6xy^3\right)=xy\left(x-1\right)\left(7y^4+3xy^3-6y^2\right)\)
Bạn tách 3 - 4 câu thành 1 phần câu hỏi rồi gửi chứ dài quá nhiều người ngại trả lời lắm :(
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
bài 1:
a) x(x-2)-5y-(x-2)=(x-5y)(x-2)
b) =(2x-3-4x)(2x-3+4x)=(-2x-3)(6x-3)
bài 2 bạn tự luyện nhé
a) x2 - 7x + 5 = ( x2 - 2 . 7/2 . x + 49 / 4 ) + 5 - 49 / 4
= (x - 7/2)^2 - 29/4
= (x - 7/2)^2 - (√ 29 / 2 )^2
= ( x - ( 7 + √ 29 / 2 )). ( x + ( 7 - √ 29 / 2 ))
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)
a) Để phân tích thành nhân tử, ta cần tìm hai số a và b sao cho a * b = 2x^2 + 5xy + 2y^2. Ta có thể thử các cặp số a và b để tìm ra kết quả. 2x^2 + 5xy + 2y^2 = (2x + y)(x + 2y) Vậy phân tích thành nhân tử của 2x^2 + 5xy + 2y^2 là (2x + y)(x + 2y). b) Để phân tích thành nhân tử, ta cần tìm hai số a và b sao cho a * b = x^2 - 2x - 14. Ta có thể thử các cặp số a và b để tìm ra kết quả. x^2 - 2x - 14 = (x - 7)(x + 2) Vậy phân tích thành nhân tử của x^2 - 2x - 14 là (x - 7)(x + 2). c) Để phân tích thành nhân tử, ta cần tìm hai số a và b sao cho a * b = 15x^2 + 7x - 2. Ta có thể thử các cặp số a và b để tìm ra kết quả. 15x^2 + 7x - 2 không thể phân tích thành nhân tử sử dụng các số nguyên.
a: =2x^2+xy+4xy+2y^2
=x(2x+y)+2y(2x+y)
=(x+2y)(2x+y)
c: =15x^2+10x-3x-2
=5x(3x+2)-(3x+2)
=(3x+2)(5x-1)
b: =x^2-2x+1-15
=(x-1)^2-15
\(=\left(x-1-\sqrt{15}\right)\left(x-1+\sqrt{15}\right)\)
7x5( x - 1 ) - 3x2y6( 1 - x ) + 5xy3( x - 1 )
= 7x5( x - 1 ) + 3x2y6( x - 1 ) + 5xy3( x - 1 )
= x( x - 1 )[ 7x4 + 3xy6 + 5y3 )