Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: HK=12cm
b: Xét ΔIHM vuông tại H và ΔIEM vuông tại E có
IM chung
\(\widehat{HIM}=\widehat{EIM}\)
Do đó:ΔIHM=ΔIEM
c: Ta có: ΔIHM=ΔIEM
nên IH=IE; MH=ME
=>IM là đường trung trực của EH
a, Xét Δ IHK vuông tại H, có :
\(IK^2=IH^2+HK^2\) (định lí Py - ta - go)
=> \(13^2=5^2+HK^2\)
=> \(HK^2=144\)
=> HK = 12 (cm)
b, Xét Δ HIM và Δ EIM, có :
\(\widehat{HIM}=\widehat{EIM}\) (IM là tia phân giác \(\widehat{HIE}\))
IM là cạnh chung
\(\widehat{IHM}=\widehat{IEM}=90^o\)
=> Δ HIM = Δ EIM (g.c.g)
c, Ta có : Δ HIM = Δ EIM (cmt)
=> HI = EI
=> Δ HIE cân tại I
Ta có :
Δ HIE cân tại I
IM là tia phân giác \(\widehat{HIE}\)
=> IM ⊥ EH
Để giải bài toán này, ta có thể sử dụng các định lý và tính chất trong hình học Euclid. Dưới đây là cách chứng minh cho từng phần:
a) Chứng minh tam giác AIB = tam giác AIC:
Ta có AB = AC (do đề bài cho)IA = IA (do cùng là một đoạn)IB = IC (do I là trung điểm của BC)Vậy tam giác AIB và tam giác AIC bằng nhau theo nguyên lý cạnh - cạnh - cạnh.b) Chứng minh AI là tia phân giác của góc BAC:
Do tam giác AIB = tam giác AIC nên ∠BAI = ∠CAIVậy AI là tia phân giác của góc BAC.c) Chứng minh IA là tia phân giác của góc HIK:
Do IH vuông góc AB và IK vuông góc AC nên ∠HIK = 90° + ∠BACMà AI là tia phân giác của góc BAC nên ∠HIA = ∠KIA = 1/2 ∠BACVậy ∠HIA + ∠KIA = ∠HIKVậy IA là tia phân giác của góc HIK.a: Xét ΔAIB và ΔAIC có
AB=AC
IB=IC
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
c: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAIH=ΔAIK
=>\(\widehat{HIA}=\widehat{KIA}\)
=>IA là phân giác của \(\widehat{HIK}\)
a) Áp dụng định lí Pytago vào ΔQMP vuông tại M, ta được:
\(PQ^2=MP^2+MQ^2\)
\(\Leftrightarrow PQ^2=3^2+4^2=25\)
hay PQ=5(cm)
Vậy: PQ=5cm
các cao nhân giúp e vs e cần gấp
câu a
Áp dụng dl pytago
suy ra HI=6cm