K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

\(N\in Z\Rightarrow9:^.\sqrt{x}-5\)\(\sqrt{x}\ge0\Rightarrow\sqrt{x}-5\ge-5\Rightarrow\sqrt{x}-5\in\left\{-3;-1;1;3;9\right\}\Rightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\)

\(\Rightarrow x\in\left\{4;16;36;64;196\right\}\)

15 tháng 12 2016

Để N có giá trị nguyên

\(\Rightarrow\frac{9}{\sqrt{x}-5}\) có giá trị nguyên

\(\Rightarrow9⋮\sqrt{x}-5\)

\(\Rightarrow\sqrt{x}-5\in\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{-4;2;4;6;8;14\right\}\)

\(\Rightarrow x\in\left\{4;16;36;64;196\right\}\)

Vậy ...........

 

2 tháng 7 2017

để N là số nguyên thì \(\frac{9}{\sqrt{x}-5}\in Z\)

\(\Rightarrow\text{ }9\text{ }⋮\text{ }\sqrt{x}-5\)

\(\Rightarrow\text{ }\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)

Lập bảng ta có :

\(\sqrt{x}-5\)1-13-39-9
\(\sqrt{x}\)648214-4
\(x\)3616644196không tồn tại
2 tháng 11 2017

4;16;36;64;196.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
Với $x$ nguyên, để $N$ nguyên thì $\sqrt{x}-5$ là ước của $9$

$\Rightarrow \sqrt{x}-5\in\left\{\pm 1;\pm 3;\pm 9\right\}$

$\Rightarrow \sqrt{x}\in\left\{4; 6; 8; 2; 14; -4\right\}$

Vì $\sqrt{x}\geq 0$ nên: $\sqrt{x}\in\left\{4; 6; 8; 2; 14\right\}$

$\Rightarrow x\in\left\{16; 36; 64; 4; 196\right\}$