Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) KO BIẾT
2)111=3.37
1111=11.101
11111=41.271
111111=3.7.11.13.37
1111111=239.(4649) LIK NHA
a, 8^8(8^2-8-8)=8^8.55 chia het cho 55
b,7^4(7^2=7-1)=7^4.5.11 chia het cho 11
c, 10^7(10^2=10=1)=10^7.111=2^7.5^7.111chia het cho 111
Lời giải:
$\underbrace{\overline{111...1}}_{n}$ có tổng các chữ số là $n$
$\Rightarrow \overline{111....1}-n\vdots 9$
$\Rightarrow \overline{111....1}-n+9n\vdots 9$
$\Rightarrow \overline{1111...1}+8n\vdots 9$
Hay $A\vdots 9$
111\(\equiv\)0(mod 7) => 333\(\equiv\)0(mod 7)
=>111333+333111 chia hết cho 7
Ta có:
1 chia 9 dư 1 [tổng các cs là 1]
11 chia 9 dư 2 [tổng các chữ số là 2]
.................................
số thứ 9 là 111.......111 chia hết cho 9 [tổng các chữ số là 9]
Cứ vậy ta được 2 vòng tuần hoàn và 2 số lẻ ra. Cụ thể:
1;2;3;4;...;9; 1;2;3;...;9; 1;2 đó là trình tự số dư khi chia 9 ở mỗi số hạng của A
=> tổng các số dư là: (1+2+3+4+...+9)*2 + 1 + 2 = 45*2 + 3 = 93 chia 9 dư 3
Vậy A chia 9 dư 3
P/s: Ai có ý kiến thắc mắc hoặc góp ý vui lòng inbox với mình
Ta có: A = 1 + 11 + 111 + ... + 111...11
Ta thấy: 1 + 11 = 12
1 + 11 + 111 = 123
1 + 11 + 111 + 1111 = 1234
=> A = 1 + 11 + 111 + 1111 + ... + 111...11 = 123...0 ( Lặp lại 20/10 = 2 lần các chữ số 1234567890 ).
Tổng các chữ số là:
45 x 2 = 90 chia hết cho 9
Vậy A chia hết cho 9
Ta thấy rằng :
111^2 = ....1
111^3 = ....1
111^4 = ....1
....
Kết luận là tận cùng của số 111^x luôn luôn là 1
Từ 111^9 đến 111 ( 111^1 ) có số số là :
( 9 - 1 ) : 1 + 1 = 9 ( số )
9 số 111^x vậy tổng trên có tận cùng là :
1 . 9 = 9
Vì 9 + 1 = 10 mà 10 chia hết cho 5 nên tổng trên chia hết cho 5 .