Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
2/3A=2/3-(2/3)^2+...+(2/3)^2019-(2/3)^2020
=>5/3A=1-(2/3)^2020
=>A=(3^2020-2^2020)/3^2020:5/3=\(\dfrac{3^{2020}-2^{2020}}{3^{2020}}\cdot\dfrac{3}{5}=\dfrac{3^{2020}-2^{2020}}{5\cdot3^{2019}}\) ko là số nguyên
Bài 8:
a: \(\left(\dfrac{2}{5}+\dfrac{3}{4}\right)^2=\left(\dfrac{8+15}{20}\right)^2=\left(\dfrac{23}{20}\right)^2=\dfrac{529}{400}\)
b: \(\left(\dfrac{5}{4}-\dfrac{1}{6}\right)^2=\left(\dfrac{15}{12}-\dfrac{2}{12}\right)^2=\left(\dfrac{13}{12}\right)^2=\dfrac{169}{144}\)
a) \(12\cdot\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\)
\(=12\cdot\dfrac{4}{9}+\dfrac{4}{3}\)
\(=\dfrac{12\cdot4}{9}+\dfrac{4}{3}\)
\(=\dfrac{16}{3}+\dfrac{4}{3}\)
\(=\dfrac{16+4}{3}\)
\(=\dfrac{20}{3}\)
b) \(\left(\dfrac{3}{2}\right)^2-\left[0,5:2-\sqrt{81}\cdot\left(-\dfrac{1}{2}\right)^2\right]\)
\(=\dfrac{9}{4}-\left(\dfrac{1}{2}:2-9\cdot\dfrac{1}{4}\right)\)
\(=\dfrac{9}{4}-\left(\dfrac{1}{4}-9\cdot\dfrac{1}{4}\right)\)
\(=\dfrac{9}{4}-\dfrac{1}{4}\cdot\left(1-9\right)\)
\(=\dfrac{9}{4}+\dfrac{8}{4}\)
\(=\dfrac{17}{4}\)
c) \(\left(-\dfrac{3}{4}+\dfrac{2}{3}\right):\dfrac{5}{11}+\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\)
\(=-\dfrac{1}{12}:\dfrac{5}{11}+\dfrac{1}{12}\)
\(=\dfrac{1}{12}\cdot-\dfrac{11}{5}+\dfrac{1}{12}\)
\(=\dfrac{1}{12}\cdot\left(-\dfrac{11}{5}+1\right)\)
\(=\dfrac{1}{12}\cdot-\dfrac{6}{5}\)
\(=-\dfrac{1}{10}\)
d) \(\dfrac{\left(-1\right)^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left|-\dfrac{5}{6}\right|\)
\(=-\dfrac{1}{15}+\dfrac{4}{9}:\left(2+\dfrac{2}{3}\right)-\dfrac{5}{6}\)
\(=-\dfrac{1}{15}+\dfrac{4}{9}:\dfrac{8}{3}-\dfrac{5}{6}\)
\(=-\dfrac{9}{10}+\dfrac{1}{6}\)
\(=-\dfrac{11}{15}\)
e) \(\dfrac{3^7\cdot8^6}{6^6\cdot\left(-2\right)^{12}}\)
\(=\dfrac{3^7\cdot\left(2^3\right)^6}{2^6\cdot3^6\cdot2^{12}}\)
\(=\dfrac{3^7\cdot2^{18}}{2^{6+12}\cdot3^6}\)
\(=\dfrac{2^{18}\cdot3^7}{2^{18}\cdot3^6}\)
\(=3^{7-6}\)
\(=3\)
\(a,12\cdot\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\\ =12\cdot\dfrac{4}{9}+\dfrac{4}{3}\\ =\dfrac{16}{3}+\dfrac{4}{3}\\ =\dfrac{20}{3}\\ b,\left(\dfrac{3}{2}\right)^2-\left[0,5:2-\sqrt{81}.\left(-\dfrac{1}{2}\right)^2\right]\\ =\dfrac{9}{4}-\left(\dfrac{1}{2}\cdot\dfrac{1}{2}-9\cdot\dfrac{1}{4}\right)\\ =\dfrac{9}{4}-\left(\dfrac{1}{4}-\dfrac{9}{4}\right)\\ =\dfrac{9}{4}-\left(-\dfrac{8}{4}\right)\\ =\dfrac{17}{4}\)
\(c,\left(-\dfrac{3}{4}+\dfrac{2}{3}\right):\dfrac{5}{11}+\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\\ =\left(-\dfrac{9}{12}+\dfrac{8}{12}\right)\cdot\dfrac{11}{5}+\left(-\dfrac{3}{12}+\dfrac{4}{12}\right)\\ =-\dfrac{1}{12}\cdot\dfrac{11}{5}+\dfrac{1}{12}\\ =-\dfrac{11}{60}+\dfrac{1}{12}\\ =-\dfrac{1}{10}\)
\(d,\dfrac{-1^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left(-\dfrac{5}{6}\right)\\ =-\dfrac{1}{15}+\dfrac{4}{9}\cdot\dfrac{3}{8}+\dfrac{5}{6}\\ =-\dfrac{1}{15}+\dfrac{1}{6}+\dfrac{5}{6}\\ =\dfrac{1}{10}+\dfrac{5}{6}\\ =\dfrac{14}{15}\)
`e,` Không hiểu đề á c: )
\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{2019}\right)^2\)
\(=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2019^2}\)
=>\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2018\cdot2019}\)
=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2018}-\dfrac{1}{2019}\)
=>\(A< 1-\dfrac{1}{2019}=1\)