Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{19}\times27^3+15\times4^9\times9^4}{6^9\times2^{10}+12^{10}}\)
\(=\frac{2^{19}\times\left(3^3\right)^3+5\times3\times\left(2^2\right)^9\times\left(3^2\right)^4}{\left(2\times3\right)^9\times2^{10}+\left(3\times4\right)^{10}}\)
\(=\frac{2^{19}\times3^9+3\times5\times2^{18}\times3^8}{3^9\times2^9\times2^{10}+3^{10}\times4^{10}}\)
\(=\frac{2^{19}\times3^9+5\times2^{18}\times3^9}{3^9\times2^{19}+3^{10}\times\left(2^2\right)^{10}}\)
\(=\frac{2^{18}\times3^9\times\left(2+5\right)}{3^9\times2^{19}+3^{10}\times2^{20}}\)
\(=\frac{2^{18}\times3^9\times7}{2^{19}\times3^9\times\left(1+3\times2\right)}\)
\(=\frac{7}{2\times\left(1+6\right)}\)
\(=\frac{7}{2\times7}\)
\(=\frac{1}{2}\)
A = 2^19.27^3+15.4^9.9^4 / 6^9.2^10+12^10
= 2^19.3^9 + 5.2^18.3^9 / 3^9.2^19 + 2^20.3^10
= 2^18.3^9 ( 2 + 5 ) / 2^19.3^9.(1 + 2.3)
= (2 + 5) / 2(1 + 6)
= 7 / 2.7
= 1/2
BÀI 2
60%.x + 0,4.x + x:3= 2
\(\frac{60}{100}\)x + \(\frac{4}{10}\).x + x. \(\frac{1}{3}\)=2
\(\frac{3}{5}\).x + \(\frac{2}{5}\).x + x.\(\frac{1}{3}\)=2
(\(\frac{3}{5}\)+ \(\frac{2}{5}\)+ \(\frac{1}{3}\)) .x =2
\(\frac{4}{3}\).x =2
x = 2: \(\frac{4}{3}\)
x = \(\frac{3}{2}\)
Vậy x=\(\frac{3}{2}\)
k cho mik nha các bạn
Bài 2 :
60%x + 0.4x + x : 3 = 2
\(x.\left(\frac{60}{100}+\frac{2}{5}+\frac{1}{3}\right)\)= 2
\(x.\frac{4}{3}\)= 2
\(x=2.\frac{3}{4}\)
\(x=1.5\)
Rút gọn A= 2^19 x 27^3 + 15 x 4^9 x 9^4 / 6^9 x 2^10 + 2^10
bạn tick mình đi bạn
B
từ 1 đến 2012 có tất cả:
2012-1:1+1 = 2012 (số)
=>có: 2012:2 = 1006 (cặp)
Mà mỗi cặp bằng (-1)nên
tổng dãy số trên là: 1006 . (-1) = -1006
(1-2)+(2-3)+(3-4)+(5-6)+...+(2011-2012)
=-1+(-1)+(-1)+(-1)+...+(-1)
có tất cả các số -1 trên dãy số trên là
(2012-2);2+1=1006
vậy suy ra ; -1x1006=(-1006)
chac chan la dung
\(P=\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{6}\right)+...+\left(1-\dfrac{1}{1225}\right)+\left(1-\dfrac{1}{1275}\right)\\ \Rightarrow\dfrac{P}{2}=\left(\dfrac{1}{2}-\dfrac{1}{6}\right)+\left(\dfrac{1}{2}-\dfrac{1}{12}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{2550}\right)\\ =\left(\dfrac{1}{2}-\dfrac{1}{2\cdot3}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3\cdot4}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{50\cdot51}\right)\\ =\dfrac{1}{2}\cdot49-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\\ =\dfrac{49}{2}-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\\ =\dfrac{49}{2}-\dfrac{1}{2}+\dfrac{1}{51}=\dfrac{1225}{51}\\ \Rightarrow P=\dfrac{2450}{51}\)
\(P=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{1225}\right)\left(1-\dfrac{1}{1275}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}...\dfrac{1224}{1225}.\dfrac{1274}{1275}\)
\(=\dfrac{2.2}{3.2}.\dfrac{5.2}{6.2}.\dfrac{9.2}{10.2}...\dfrac{1224.2}{1225.2}.\dfrac{1274.2}{1275.2}\)
\(=\dfrac{4}{9}.\dfrac{10}{12}.\dfrac{18}{20}...\dfrac{2448}{2450}.\dfrac{2548}{2550}\)
\(=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{48.51}{49.50}.\dfrac{49.52}{50.51}\)
\(=\dfrac{1.2.3...48.49}{2.3.4...49.50}.\dfrac{4.5.6...51.52}{3.4.5...50.51}\)
\(=\dfrac{1}{50}.\dfrac{52}{3}\)
\(=\dfrac{26}{75}\).
\(B=\left(\frac{1}{3}-1\right).\left(\frac{1}{6}-1\right).\left(\frac{1}{10}-1\right).......\left(\frac{1}{1225}-1\right)\left(\frac{1}{1275}-1\right)\)
\(B=\frac{-2}{3}.\frac{-5}{6}.\frac{-9}{10}......\frac{-1224}{1225}.\frac{-1274}{1275}\)
\(B=\frac{-4}{6}.\frac{-10}{12}.\frac{-18}{20}......\frac{-2448}{2450}.\frac{-2548}{2550}\)
\(B=\frac{-4}{2.3}.\frac{-10}{3.4}.\frac{-18}{4.5}.....\frac{-2448}{49.50}.\frac{-2548}{50.51}\)
\(\Rightarrow\)B có : ( 50 - 2 ) : 1 + 1 = 49 ( số hạng )
\(\Rightarrow B=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}........\frac{2448}{49.50}.\frac{2548}{50.51}.\left(-1\right)\)
\(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.........\frac{48.51}{49.50}.\frac{49.52}{50.51}.\left(-1\right)\)
\(B=\frac{\left(1.2.3...48.49\right).\left(4.5.6......51.52\right)}{\left(2.3.4......49.50\right).\left(3.4.5.....50.51\right)}.\left(-1\right)\)
\(B=\frac{52}{50.3}.\left(-1\right)\)
\(B=\frac{26}{75}.\left(-1\right)\)
Vậy \(B=\frac{-26}{75}\)